Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach
Diffusion-sensitized magnetic resonance imaging probes the cellular structure of the human brain, but the primary microstructural information gets lost in averaging over higher-level, mesoscopic tissue organization such as different orientations of neuronal fibers. While such averaging is inevitable...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2017-02, Vol.147, p.964-975 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 975 |
---|---|
container_issue | |
container_start_page | 964 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 147 |
creator | Reisert, Marco Kellner, Elias Dhital, Bibek Hennig, Jürgen Kiselev, Valerij G. |
description | Diffusion-sensitized magnetic resonance imaging probes the cellular structure of the human brain, but the primary microstructural information gets lost in averaging over higher-level, mesoscopic tissue organization such as different orientations of neuronal fibers. While such averaging is inevitable due to the limited imaging resolution, we propose a method for disentangling the microscopic cell properties from the effects of mesoscopic structure. We further avoid the classical fitting paradigm and use supervised machine learning in terms of a Bayesian estimator to estimate the microstructural properties. The method finds detectable parameters of a given microstructural model and calculates them within seconds, which makes it suitable for a broad range of neuroscientific applications.
•Disentanglement of microstructural properties of neurites from their orientation distribution.•Microstructure estimation from clinical feasible dMRI, including fast protocols (as few as 28 diffusion weighting directions).•Computation time of seconds.•In-vivo results are consistent with existing anatomical knowledge. |
doi_str_mv | 10.1016/j.neuroimage.2016.09.058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835446530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811916305353</els_id><sourcerecordid>1835446530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-b26bef8b03203d238f3ebfa6f9cbaf3978248fee8ab636d72f7fa4797cb4a2cf3</originalsourceid><addsrcrecordid>eNqFkF1rHCEUhqU0NGnav1CE3vRmJn7MjNq7JP0KbAiE9lrUOW5ddnSrM4H993HZtIXc5OrI4Xl99UEIU9JSQoeLTRthySlMZg0tq5uWqJb08hU6o0T1jeoFe30497yRlKpT9LaUDSFE0U6-QadMiG7gUp6h1ZdQIM4mrrchrvEUXE7Y5zThCUoqc17cvGTAdo_H4P1SQor49v7mM77EV2YPJZiIzW6Xk3G_36ETb7YF3j_Nc_Tr29ef1z-a1d33m-vLVeN6KufGssGCl5ZwRvjIuPQcrDeDV84az5WQrJMeQBo78GEUzAtvOqGEs51hzvNz9Ol4b639s0CZ9RSKg-3WREhL0VTyvuuGnpOKfnyGbtKSY31dpZSkpOOCVUoeqfr7UjJ4vctVbt5rSvTBuN7o_8b1wbgmSlfjNfrhqWCxE4z_gn8VV-DqCEA18hAg6-ICRAdjyOBmPabwcssj2r2XwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898104372</pqid></control><display><type>article</type><title>Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Reisert, Marco ; Kellner, Elias ; Dhital, Bibek ; Hennig, Jürgen ; Kiselev, Valerij G.</creator><creatorcontrib>Reisert, Marco ; Kellner, Elias ; Dhital, Bibek ; Hennig, Jürgen ; Kiselev, Valerij G.</creatorcontrib><description>Diffusion-sensitized magnetic resonance imaging probes the cellular structure of the human brain, but the primary microstructural information gets lost in averaging over higher-level, mesoscopic tissue organization such as different orientations of neuronal fibers. While such averaging is inevitable due to the limited imaging resolution, we propose a method for disentangling the microscopic cell properties from the effects of mesoscopic structure. We further avoid the classical fitting paradigm and use supervised machine learning in terms of a Bayesian estimator to estimate the microstructural properties. The method finds detectable parameters of a given microstructural model and calculates them within seconds, which makes it suitable for a broad range of neuroscientific applications.
•Disentanglement of microstructural properties of neurites from their orientation distribution.•Microstructure estimation from clinical feasible dMRI, including fast protocols (as few as 28 diffusion weighting directions).•Computation time of seconds.•In-vivo results are consistent with existing anatomical knowledge.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2016.09.058</identifier><identifier>PMID: 27746388</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Artificial intelligence ; Axonal density ; Bayes Theorem ; Bayesian analysis ; Brain ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion Magnetic Resonance Imaging - standards ; Diffusion MRI ; Fibers ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - standards ; Learning algorithms ; Magnetic resonance imaging ; Microstructural parameters ; Microstructure imaging ; Models, Neurological ; Multi-shell dMRI ; Neurites ; Neuroimaging ; NMR ; Noise ; Nuclear magnetic resonance ; Probes ; White matter ; White Matter - diagnostic imaging</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-02, Vol.147, p.964-975</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-b26bef8b03203d238f3ebfa6f9cbaf3978248fee8ab636d72f7fa4797cb4a2cf3</citedby><cites>FETCH-LOGICAL-c518t-b26bef8b03203d238f3ebfa6f9cbaf3978248fee8ab636d72f7fa4797cb4a2cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811916305353$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27746388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reisert, Marco</creatorcontrib><creatorcontrib>Kellner, Elias</creatorcontrib><creatorcontrib>Dhital, Bibek</creatorcontrib><creatorcontrib>Hennig, Jürgen</creatorcontrib><creatorcontrib>Kiselev, Valerij G.</creatorcontrib><title>Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Diffusion-sensitized magnetic resonance imaging probes the cellular structure of the human brain, but the primary microstructural information gets lost in averaging over higher-level, mesoscopic tissue organization such as different orientations of neuronal fibers. While such averaging is inevitable due to the limited imaging resolution, we propose a method for disentangling the microscopic cell properties from the effects of mesoscopic structure. We further avoid the classical fitting paradigm and use supervised machine learning in terms of a Bayesian estimator to estimate the microstructural properties. The method finds detectable parameters of a given microstructural model and calculates them within seconds, which makes it suitable for a broad range of neuroscientific applications.
•Disentanglement of microstructural properties of neurites from their orientation distribution.•Microstructure estimation from clinical feasible dMRI, including fast protocols (as few as 28 diffusion weighting directions).•Computation time of seconds.•In-vivo results are consistent with existing anatomical knowledge.</description><subject>Adult</subject><subject>Artificial intelligence</subject><subject>Axonal density</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Brain</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion Magnetic Resonance Imaging - standards</subject><subject>Diffusion MRI</subject><subject>Fibers</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - standards</subject><subject>Learning algorithms</subject><subject>Magnetic resonance imaging</subject><subject>Microstructural parameters</subject><subject>Microstructure imaging</subject><subject>Models, Neurological</subject><subject>Multi-shell dMRI</subject><subject>Neurites</subject><subject>Neuroimaging</subject><subject>NMR</subject><subject>Noise</subject><subject>Nuclear magnetic resonance</subject><subject>Probes</subject><subject>White matter</subject><subject>White Matter - diagnostic imaging</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkF1rHCEUhqU0NGnav1CE3vRmJn7MjNq7JP0KbAiE9lrUOW5ddnSrM4H993HZtIXc5OrI4Xl99UEIU9JSQoeLTRthySlMZg0tq5uWqJb08hU6o0T1jeoFe30497yRlKpT9LaUDSFE0U6-QadMiG7gUp6h1ZdQIM4mrrchrvEUXE7Y5zThCUoqc17cvGTAdo_H4P1SQor49v7mM77EV2YPJZiIzW6Xk3G_36ETb7YF3j_Nc_Tr29ef1z-a1d33m-vLVeN6KufGssGCl5ZwRvjIuPQcrDeDV84az5WQrJMeQBo78GEUzAtvOqGEs51hzvNz9Ol4b639s0CZ9RSKg-3WREhL0VTyvuuGnpOKfnyGbtKSY31dpZSkpOOCVUoeqfr7UjJ4vctVbt5rSvTBuN7o_8b1wbgmSlfjNfrhqWCxE4z_gn8VV-DqCEA18hAg6-ICRAdjyOBmPabwcssj2r2XwQ</recordid><startdate>20170215</startdate><enddate>20170215</enddate><creator>Reisert, Marco</creator><creator>Kellner, Elias</creator><creator>Dhital, Bibek</creator><creator>Hennig, Jürgen</creator><creator>Kiselev, Valerij G.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170215</creationdate><title>Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach</title><author>Reisert, Marco ; Kellner, Elias ; Dhital, Bibek ; Hennig, Jürgen ; Kiselev, Valerij G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-b26bef8b03203d238f3ebfa6f9cbaf3978248fee8ab636d72f7fa4797cb4a2cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Artificial intelligence</topic><topic>Axonal density</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Brain</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion Magnetic Resonance Imaging - standards</topic><topic>Diffusion MRI</topic><topic>Fibers</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - standards</topic><topic>Learning algorithms</topic><topic>Magnetic resonance imaging</topic><topic>Microstructural parameters</topic><topic>Microstructure imaging</topic><topic>Models, Neurological</topic><topic>Multi-shell dMRI</topic><topic>Neurites</topic><topic>Neuroimaging</topic><topic>NMR</topic><topic>Noise</topic><topic>Nuclear magnetic resonance</topic><topic>Probes</topic><topic>White matter</topic><topic>White Matter - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reisert, Marco</creatorcontrib><creatorcontrib>Kellner, Elias</creatorcontrib><creatorcontrib>Dhital, Bibek</creatorcontrib><creatorcontrib>Hennig, Jürgen</creatorcontrib><creatorcontrib>Kiselev, Valerij G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reisert, Marco</au><au>Kellner, Elias</au><au>Dhital, Bibek</au><au>Hennig, Jürgen</au><au>Kiselev, Valerij G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-02-15</date><risdate>2017</risdate><volume>147</volume><spage>964</spage><epage>975</epage><pages>964-975</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Diffusion-sensitized magnetic resonance imaging probes the cellular structure of the human brain, but the primary microstructural information gets lost in averaging over higher-level, mesoscopic tissue organization such as different orientations of neuronal fibers. While such averaging is inevitable due to the limited imaging resolution, we propose a method for disentangling the microscopic cell properties from the effects of mesoscopic structure. We further avoid the classical fitting paradigm and use supervised machine learning in terms of a Bayesian estimator to estimate the microstructural properties. The method finds detectable parameters of a given microstructural model and calculates them within seconds, which makes it suitable for a broad range of neuroscientific applications.
•Disentanglement of microstructural properties of neurites from their orientation distribution.•Microstructure estimation from clinical feasible dMRI, including fast protocols (as few as 28 diffusion weighting directions).•Computation time of seconds.•In-vivo results are consistent with existing anatomical knowledge.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27746388</pmid><doi>10.1016/j.neuroimage.2016.09.058</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2017-02, Vol.147, p.964-975 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835446530 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Artificial intelligence Axonal density Bayes Theorem Bayesian analysis Brain Diffusion Magnetic Resonance Imaging - methods Diffusion Magnetic Resonance Imaging - standards Diffusion MRI Fibers Humans Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - standards Learning algorithms Magnetic resonance imaging Microstructural parameters Microstructure imaging Models, Neurological Multi-shell dMRI Neurites Neuroimaging NMR Noise Nuclear magnetic resonance Probes White matter White Matter - diagnostic imaging |
title | Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disentangling%20micro%20from%20mesostructure%20by%20diffusion%20MRI:%20A%20Bayesian%20approach&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Reisert,%20Marco&rft.date=2017-02-15&rft.volume=147&rft.spage=964&rft.epage=975&rft.pages=964-975&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2016.09.058&rft_dat=%3Cproquest_cross%3E1835446530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898104372&rft_id=info:pmid/27746388&rft_els_id=S1053811916305353&rfr_iscdi=true |