Morse, Lennard-Jones, and Kratzer Potentials: A Canonical Perspective with Applications
Canonical approaches are applied to classic Morse, Lennard-Jones, and Kratzer potentials. Using the canonical transformation generated for the Morse potential as a reference, inverse transformations allow the accurate generation of the Born–Oppenheimer potential for the H2 + ion, neutral covalently...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2016-10, Vol.120 (42), p.8347-8359 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8359 |
---|---|
container_issue | 42 |
container_start_page | 8347 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 120 |
creator | Walton, Jay R Rivera-Rivera, Luis A Lucchese, Robert R Bevan, John W |
description | Canonical approaches are applied to classic Morse, Lennard-Jones, and Kratzer potentials. Using the canonical transformation generated for the Morse potential as a reference, inverse transformations allow the accurate generation of the Born–Oppenheimer potential for the H2 + ion, neutral covalently bound H2, van der Waals bound Ar2, and the hydrogen bonded one-dimensional dissociative coordinate in a water dimer. Similar transformations are also generated using the Lennard-Jones and Kratzer potentials as references. Following application of inverse transformations, vibrational eigenvalues generated from the Born–Oppenheimer potentials give significantly improved quantitative comparison with values determined from the original accurately known potentials. In addition, an algorithmic strategy based upon a canonical transformation to the dimensionless form applied to the force distribution associated with a potential is presented. The resulting canonical force distribution is employed to construct an algorithm for deriving accurate estimates for the dissociation energy, the maximum attractive force, and the internuclear separations corresponding to the maximum attractive force and the potential well. |
doi_str_mv | 10.1021/acs.jpca.6b05371 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835416338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835416338</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-609a23cea9c5b80a1e0e300df1f64ef2cf52cdf6387c2ae647af4b83c8c1a2c83</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EouVjZ0IeGZrij8Rx2aqK7yI6gBiji3MRqVI72AkIfj0pLWxMd9I97yvdQ8gJZ2POBD8HE8bLxsBY5SyRKd8hQ54IFiWCJ7v9zvQkSpScDMhBCEvGGJci3icDkapUcaWH5OXB-YAjOkdrwRfRnbMYRhRsQe89tF_o6cK1aNsK6nBBp3QG1tnKQE0X6EODpq3ekX5U7SudNk3dX9rK2XBE9so-gcfbeUiery6fZjfR_PH6djadRxDHuo0Um4CQBmFiklwz4MhQMlaUvFQxlsKUiTBFqaROjQBUcQplnGtptOEgjJaH5GzT23j31mFos1UVDNY1WHRdyLiWScyVlGuUbVDjXQgey6zx1Qr8Z8ZZttaZ9Tqztc5sq7OPnG7bu3yFxV_g118PjDbAT9R13vbP_t_3DXJIgZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835416338</pqid></control><display><type>article</type><title>Morse, Lennard-Jones, and Kratzer Potentials: A Canonical Perspective with Applications</title><source>ACS Publications</source><creator>Walton, Jay R ; Rivera-Rivera, Luis A ; Lucchese, Robert R ; Bevan, John W</creator><creatorcontrib>Walton, Jay R ; Rivera-Rivera, Luis A ; Lucchese, Robert R ; Bevan, John W</creatorcontrib><description>Canonical approaches are applied to classic Morse, Lennard-Jones, and Kratzer potentials. Using the canonical transformation generated for the Morse potential as a reference, inverse transformations allow the accurate generation of the Born–Oppenheimer potential for the H2 + ion, neutral covalently bound H2, van der Waals bound Ar2, and the hydrogen bonded one-dimensional dissociative coordinate in a water dimer. Similar transformations are also generated using the Lennard-Jones and Kratzer potentials as references. Following application of inverse transformations, vibrational eigenvalues generated from the Born–Oppenheimer potentials give significantly improved quantitative comparison with values determined from the original accurately known potentials. In addition, an algorithmic strategy based upon a canonical transformation to the dimensionless form applied to the force distribution associated with a potential is presented. The resulting canonical force distribution is employed to construct an algorithm for deriving accurate estimates for the dissociation energy, the maximum attractive force, and the internuclear separations corresponding to the maximum attractive force and the potential well.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.6b05371</identifier><identifier>PMID: 27676168</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2016-10, Vol.120 (42), p.8347-8359</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-609a23cea9c5b80a1e0e300df1f64ef2cf52cdf6387c2ae647af4b83c8c1a2c83</citedby><cites>FETCH-LOGICAL-a448t-609a23cea9c5b80a1e0e300df1f64ef2cf52cdf6387c2ae647af4b83c8c1a2c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.6b05371$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.6b05371$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27676168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walton, Jay R</creatorcontrib><creatorcontrib>Rivera-Rivera, Luis A</creatorcontrib><creatorcontrib>Lucchese, Robert R</creatorcontrib><creatorcontrib>Bevan, John W</creatorcontrib><title>Morse, Lennard-Jones, and Kratzer Potentials: A Canonical Perspective with Applications</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Canonical approaches are applied to classic Morse, Lennard-Jones, and Kratzer potentials. Using the canonical transformation generated for the Morse potential as a reference, inverse transformations allow the accurate generation of the Born–Oppenheimer potential for the H2 + ion, neutral covalently bound H2, van der Waals bound Ar2, and the hydrogen bonded one-dimensional dissociative coordinate in a water dimer. Similar transformations are also generated using the Lennard-Jones and Kratzer potentials as references. Following application of inverse transformations, vibrational eigenvalues generated from the Born–Oppenheimer potentials give significantly improved quantitative comparison with values determined from the original accurately known potentials. In addition, an algorithmic strategy based upon a canonical transformation to the dimensionless form applied to the force distribution associated with a potential is presented. The resulting canonical force distribution is employed to construct an algorithm for deriving accurate estimates for the dissociation energy, the maximum attractive force, and the internuclear separations corresponding to the maximum attractive force and the potential well.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EouVjZ0IeGZrij8Rx2aqK7yI6gBiji3MRqVI72AkIfj0pLWxMd9I97yvdQ8gJZ2POBD8HE8bLxsBY5SyRKd8hQ54IFiWCJ7v9zvQkSpScDMhBCEvGGJci3icDkapUcaWH5OXB-YAjOkdrwRfRnbMYRhRsQe89tF_o6cK1aNsK6nBBp3QG1tnKQE0X6EODpq3ekX5U7SudNk3dX9rK2XBE9so-gcfbeUiery6fZjfR_PH6djadRxDHuo0Um4CQBmFiklwz4MhQMlaUvFQxlsKUiTBFqaROjQBUcQplnGtptOEgjJaH5GzT23j31mFos1UVDNY1WHRdyLiWScyVlGuUbVDjXQgey6zx1Qr8Z8ZZttaZ9Tqztc5sq7OPnG7bu3yFxV_g118PjDbAT9R13vbP_t_3DXJIgZs</recordid><startdate>20161027</startdate><enddate>20161027</enddate><creator>Walton, Jay R</creator><creator>Rivera-Rivera, Luis A</creator><creator>Lucchese, Robert R</creator><creator>Bevan, John W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161027</creationdate><title>Morse, Lennard-Jones, and Kratzer Potentials: A Canonical Perspective with Applications</title><author>Walton, Jay R ; Rivera-Rivera, Luis A ; Lucchese, Robert R ; Bevan, John W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-609a23cea9c5b80a1e0e300df1f64ef2cf52cdf6387c2ae647af4b83c8c1a2c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walton, Jay R</creatorcontrib><creatorcontrib>Rivera-Rivera, Luis A</creatorcontrib><creatorcontrib>Lucchese, Robert R</creatorcontrib><creatorcontrib>Bevan, John W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walton, Jay R</au><au>Rivera-Rivera, Luis A</au><au>Lucchese, Robert R</au><au>Bevan, John W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morse, Lennard-Jones, and Kratzer Potentials: A Canonical Perspective with Applications</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2016-10-27</date><risdate>2016</risdate><volume>120</volume><issue>42</issue><spage>8347</spage><epage>8359</epage><pages>8347-8359</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Canonical approaches are applied to classic Morse, Lennard-Jones, and Kratzer potentials. Using the canonical transformation generated for the Morse potential as a reference, inverse transformations allow the accurate generation of the Born–Oppenheimer potential for the H2 + ion, neutral covalently bound H2, van der Waals bound Ar2, and the hydrogen bonded one-dimensional dissociative coordinate in a water dimer. Similar transformations are also generated using the Lennard-Jones and Kratzer potentials as references. Following application of inverse transformations, vibrational eigenvalues generated from the Born–Oppenheimer potentials give significantly improved quantitative comparison with values determined from the original accurately known potentials. In addition, an algorithmic strategy based upon a canonical transformation to the dimensionless form applied to the force distribution associated with a potential is presented. The resulting canonical force distribution is employed to construct an algorithm for deriving accurate estimates for the dissociation energy, the maximum attractive force, and the internuclear separations corresponding to the maximum attractive force and the potential well.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27676168</pmid><doi>10.1021/acs.jpca.6b05371</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2016-10, Vol.120 (42), p.8347-8359 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835416338 |
source | ACS Publications |
title | Morse, Lennard-Jones, and Kratzer Potentials: A Canonical Perspective with Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morse,%20Lennard-Jones,%20and%20Kratzer%20Potentials:%20A%20Canonical%20Perspective%20with%20Applications&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Walton,%20Jay%20R&rft.date=2016-10-27&rft.volume=120&rft.issue=42&rft.spage=8347&rft.epage=8359&rft.pages=8347-8359&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.6b05371&rft_dat=%3Cproquest_cross%3E1835416338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835416338&rft_id=info:pmid/27676168&rfr_iscdi=true |