Quantifying Uncertainty in the Ratio of Two Measured Variables: A Recap and Example
Estimating uncertainty in the ratio of 2 measured variables can be achieved via 2 seemingly different approaches: by determining the variance of the first-order Taylor approximation to the ratio, or by the so-called “Propagation of Error” approach. This Lesson Learned shows that the 2 approaches are...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical sciences 2016-11, Vol.105 (11), p.3462-3463 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3463 |
---|---|
container_issue | 11 |
container_start_page | 3462 |
container_title | Journal of pharmaceutical sciences |
container_volume | 105 |
creator | Shackleford, David M. Jamsen, Kris M. |
description | Estimating uncertainty in the ratio of 2 measured variables can be achieved via 2 seemingly different approaches: by determining the variance of the first-order Taylor approximation to the ratio, or by the so-called “Propagation of Error” approach. This Lesson Learned shows that the 2 approaches are mathematically equivalent, and provides an example of the approach. |
doi_str_mv | 10.1016/j.xphs.2016.07.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835409478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354916416084</els_id><sourcerecordid>1835409478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-385b93a31610bd67aa32bd72b732e48ed4ee30a43557c40a0e0e835468d02c0b3</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS0EotvCH-CAfOSSMLZjO0FcqqpQpCLU0nK1JvYs9SqbBDuh3X_frLb0yGnm8L0nvY-xdwJKAcJ83JQP410u5fKXYEsQzQu2ElpCYUDYl2wFIGWhdNUcseOcNwBgQOvX7Ehaoxqj6xX7eTVjP8X1Lva_-W3vKU0Y-2nHY8-nO-LXOMWBD2t-cz_w74R5ThT4L0wR247yJ37Kr8njyLEP_PwBt2NHb9irNXaZ3j7dE3b75fzm7KK4_PH129npZeGVNlOhat02CpUwAtpgLKKSbbCytUpSVVOoiBRgpbS2vgIEAqqXNaYOID206oR9OPSOafgzU57cNmZPXYc9DXN2Yk9DU9l6QeUB9WnIOdHajSluMe2cALeX6TZuL9PtZTqwbpG5hN4_9c_tlsJz5J-9Bfh8AGhZ-TdSctlHWiSGmMhPLgzxf_2P2QaEoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835409478</pqid></control><display><type>article</type><title>Quantifying Uncertainty in the Ratio of Two Measured Variables: A Recap and Example</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Shackleford, David M. ; Jamsen, Kris M.</creator><creatorcontrib>Shackleford, David M. ; Jamsen, Kris M.</creatorcontrib><description>Estimating uncertainty in the ratio of 2 measured variables can be achieved via 2 seemingly different approaches: by determining the variance of the first-order Taylor approximation to the ratio, or by the so-called “Propagation of Error” approach. This Lesson Learned shows that the 2 approaches are mathematically equivalent, and provides an example of the approach.</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1016/j.xphs.2016.07.019</identifier><identifier>PMID: 27639658</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ADME ; bioavailability ; Biological Availability ; Caco-2 Cells ; Humans ; in vitro models ; Pharmaceutical Preparations - metabolism ; pharmacokinetics ; Uncertainty</subject><ispartof>Journal of pharmaceutical sciences, 2016-11, Vol.105 (11), p.3462-3463</ispartof><rights>2016 American Pharmacists Association</rights><rights>Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-385b93a31610bd67aa32bd72b732e48ed4ee30a43557c40a0e0e835468d02c0b3</citedby><cites>FETCH-LOGICAL-c356t-385b93a31610bd67aa32bd72b732e48ed4ee30a43557c40a0e0e835468d02c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27639658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shackleford, David M.</creatorcontrib><creatorcontrib>Jamsen, Kris M.</creatorcontrib><title>Quantifying Uncertainty in the Ratio of Two Measured Variables: A Recap and Example</title><title>Journal of pharmaceutical sciences</title><addtitle>J Pharm Sci</addtitle><description>Estimating uncertainty in the ratio of 2 measured variables can be achieved via 2 seemingly different approaches: by determining the variance of the first-order Taylor approximation to the ratio, or by the so-called “Propagation of Error” approach. This Lesson Learned shows that the 2 approaches are mathematically equivalent, and provides an example of the approach.</description><subject>ADME</subject><subject>bioavailability</subject><subject>Biological Availability</subject><subject>Caco-2 Cells</subject><subject>Humans</subject><subject>in vitro models</subject><subject>Pharmaceutical Preparations - metabolism</subject><subject>pharmacokinetics</subject><subject>Uncertainty</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFv1DAQhS0EotvCH-CAfOSSMLZjO0FcqqpQpCLU0nK1JvYs9SqbBDuh3X_frLb0yGnm8L0nvY-xdwJKAcJ83JQP410u5fKXYEsQzQu2ElpCYUDYl2wFIGWhdNUcseOcNwBgQOvX7Ehaoxqj6xX7eTVjP8X1Lva_-W3vKU0Y-2nHY8-nO-LXOMWBD2t-cz_w74R5ThT4L0wR247yJ37Kr8njyLEP_PwBt2NHb9irNXaZ3j7dE3b75fzm7KK4_PH129npZeGVNlOhat02CpUwAtpgLKKSbbCytUpSVVOoiBRgpbS2vgIEAqqXNaYOID206oR9OPSOafgzU57cNmZPXYc9DXN2Yk9DU9l6QeUB9WnIOdHajSluMe2cALeX6TZuL9PtZTqwbpG5hN4_9c_tlsJz5J-9Bfh8AGhZ-TdSctlHWiSGmMhPLgzxf_2P2QaEoQ</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Shackleford, David M.</creator><creator>Jamsen, Kris M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201611</creationdate><title>Quantifying Uncertainty in the Ratio of Two Measured Variables: A Recap and Example</title><author>Shackleford, David M. ; Jamsen, Kris M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-385b93a31610bd67aa32bd72b732e48ed4ee30a43557c40a0e0e835468d02c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ADME</topic><topic>bioavailability</topic><topic>Biological Availability</topic><topic>Caco-2 Cells</topic><topic>Humans</topic><topic>in vitro models</topic><topic>Pharmaceutical Preparations - metabolism</topic><topic>pharmacokinetics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shackleford, David M.</creatorcontrib><creatorcontrib>Jamsen, Kris M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shackleford, David M.</au><au>Jamsen, Kris M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Uncertainty in the Ratio of Two Measured Variables: A Recap and Example</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J Pharm Sci</addtitle><date>2016-11</date><risdate>2016</risdate><volume>105</volume><issue>11</issue><spage>3462</spage><epage>3463</epage><pages>3462-3463</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><abstract>Estimating uncertainty in the ratio of 2 measured variables can be achieved via 2 seemingly different approaches: by determining the variance of the first-order Taylor approximation to the ratio, or by the so-called “Propagation of Error” approach. This Lesson Learned shows that the 2 approaches are mathematically equivalent, and provides an example of the approach.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27639658</pmid><doi>10.1016/j.xphs.2016.07.019</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3549 |
ispartof | Journal of pharmaceutical sciences, 2016-11, Vol.105 (11), p.3462-3463 |
issn | 0022-3549 1520-6017 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835409478 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | ADME bioavailability Biological Availability Caco-2 Cells Humans in vitro models Pharmaceutical Preparations - metabolism pharmacokinetics Uncertainty |
title | Quantifying Uncertainty in the Ratio of Two Measured Variables: A Recap and Example |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Uncertainty%20in%20the%20Ratio%20of%20Two%20Measured%20Variables:%20A%20Recap%20and%20Example&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Shackleford,%20David%20M.&rft.date=2016-11&rft.volume=105&rft.issue=11&rft.spage=3462&rft.epage=3463&rft.pages=3462-3463&rft.issn=0022-3549&rft.eissn=1520-6017&rft_id=info:doi/10.1016/j.xphs.2016.07.019&rft_dat=%3Cproquest_cross%3E1835409478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835409478&rft_id=info:pmid/27639658&rft_els_id=S0022354916416084&rfr_iscdi=true |