Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver

The ear of the bush-cricket, Copiphora gorgonensis, consists of a system of paired eardrums (tympana) on each foreleg. In these insects, the ear is backed by an air-filled tube, the acoustic trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of the eardru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2016-09, Vol.13 (122), p.20160560
Hauptverfasser: Jonsson, Thorin, Montealegre-Z, Fernando, Soulsbury, Carl D., Robson Brown, Kate A., Robert, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 122
container_start_page 20160560
container_title Journal of the Royal Society interface
container_volume 13
creator Jonsson, Thorin
Montealegre-Z, Fernando
Soulsbury, Carl D.
Robson Brown, Kate A.
Robert, Daniel
description The ear of the bush-cricket, Copiphora gorgonensis, consists of a system of paired eardrums (tympana) on each foreleg. In these insects, the ear is backed by an air-filled tube, the acoustic trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of the eardrums. Both surfaces of the eardrums of this auditory system are exposed to sound, making it a directionally sensitive pressure difference receiver. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces at the tympanum. The mechanism responsible for reduction in sound velocity in the AT remains elusive, yet it is deemed to depend on adiabatic or isothermal conditions. To investigate the biophysics of such multiple input ears, we used micro-scanning laser Doppler vibrometry and micro-computed X-ray tomography. We measured the velocity of sound propagation in the AT, the transmission gains across auditory frequencies and the time-resolved mechanical dynamics of the tympanal membranes in C. gorgonensis. Tracheal sound transmission generates a gain of approximately 15 dB SPL, and a propagation velocity of ca 255 m s−1, an approximately 25% reduction from free field propagation. Modelling tracheal acoustic behaviour that accounts for thermal and viscous effects, we conclude that reduction in sound velocity within the AT can be explained, among others, by heat exchange between the sound wave and the tracheal walls.
doi_str_mv 10.1098/rsif.2016.0560
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835404495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835404495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-c424e2a3b04a1a4b2a462e8c4ff2b8aaa17a7a7698587841624a5d71b932716b3</originalsourceid><addsrcrecordid>eNp1kUtrGzEUhUVJadK02y6LltnY1Xs0WQRC6AsC3bRrodHcqZWMJVcPg_995DgxyaIIpCvud47EPQh9omRJSa-_pOynJSNULYlU5A06o51gC6kUOznWuj9F73O-I4R3XMp36JR1SnNCyBkK13X0JaYdXoNb2eBdxj5gi4eaVwuXvLuHcolHn8AVDFs_QnCA44THamecYw1jE2xqedSVFeBNgpxrgiaaJkiPfFOD30L6gN5Ods7w8ek8R3--ff1982Nx--v7z5vr24UTXJS2MwHM8oEIS60YmBWKgXZimtigrbW0s22pXkvdaUEVE1aOHR16zjqqBn6Org6-mzqsYXQQSrKz2SS_tmlnovXmdSf4lfkbt0YSoXrZNYOLJ4MU_1XIxax9djDPNkCs2VDNpSBC9LKhywPqUsw5wXR8hhKzD8nsQzL7kMw-pCb4_PJzR_w5lQbwA5Dirk0pOg9lZ-5iTaFd_2f7AFB7oYk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835404495</pqid></control><display><type>article</type><title>Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver</title><source>PubMed Central</source><creator>Jonsson, Thorin ; Montealegre-Z, Fernando ; Soulsbury, Carl D. ; Robson Brown, Kate A. ; Robert, Daniel</creator><creatorcontrib>Jonsson, Thorin ; Montealegre-Z, Fernando ; Soulsbury, Carl D. ; Robson Brown, Kate A. ; Robert, Daniel</creatorcontrib><description>The ear of the bush-cricket, Copiphora gorgonensis, consists of a system of paired eardrums (tympana) on each foreleg. In these insects, the ear is backed by an air-filled tube, the acoustic trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of the eardrums. Both surfaces of the eardrums of this auditory system are exposed to sound, making it a directionally sensitive pressure difference receiver. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces at the tympanum. The mechanism responsible for reduction in sound velocity in the AT remains elusive, yet it is deemed to depend on adiabatic or isothermal conditions. To investigate the biophysics of such multiple input ears, we used micro-scanning laser Doppler vibrometry and micro-computed X-ray tomography. We measured the velocity of sound propagation in the AT, the transmission gains across auditory frequencies and the time-resolved mechanical dynamics of the tympanal membranes in C. gorgonensis. Tracheal sound transmission generates a gain of approximately 15 dB SPL, and a propagation velocity of ca 255 m s−1, an approximately 25% reduction from free field propagation. Modelling tracheal acoustic behaviour that accounts for thermal and viscous effects, we conclude that reduction in sound velocity within the AT can be explained, among others, by heat exchange between the sound wave and the tracheal walls.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2016.0560</identifier><identifier>PMID: 27683000</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Acoustic Trachea ; Bush-Cricket ; Katydid ; Life Sciences–Physics interface ; Sound Processing ; Sound Propagation ; Tympanum</subject><ispartof>Journal of the Royal Society interface, 2016-09, Vol.13 (122), p.20160560</ispartof><rights>2016 The Author(s)</rights><rights>2016 The Author(s).</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-c424e2a3b04a1a4b2a462e8c4ff2b8aaa17a7a7698587841624a5d71b932716b3</citedby><cites>FETCH-LOGICAL-c434t-c424e2a3b04a1a4b2a462e8c4ff2b8aaa17a7a7698587841624a5d71b932716b3</cites><orcidid>0000-0002-5049-7612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046957/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046957/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27683000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jonsson, Thorin</creatorcontrib><creatorcontrib>Montealegre-Z, Fernando</creatorcontrib><creatorcontrib>Soulsbury, Carl D.</creatorcontrib><creatorcontrib>Robson Brown, Kate A.</creatorcontrib><creatorcontrib>Robert, Daniel</creatorcontrib><title>Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J R Soc Interface</addtitle><description>The ear of the bush-cricket, Copiphora gorgonensis, consists of a system of paired eardrums (tympana) on each foreleg. In these insects, the ear is backed by an air-filled tube, the acoustic trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of the eardrums. Both surfaces of the eardrums of this auditory system are exposed to sound, making it a directionally sensitive pressure difference receiver. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces at the tympanum. The mechanism responsible for reduction in sound velocity in the AT remains elusive, yet it is deemed to depend on adiabatic or isothermal conditions. To investigate the biophysics of such multiple input ears, we used micro-scanning laser Doppler vibrometry and micro-computed X-ray tomography. We measured the velocity of sound propagation in the AT, the transmission gains across auditory frequencies and the time-resolved mechanical dynamics of the tympanal membranes in C. gorgonensis. Tracheal sound transmission generates a gain of approximately 15 dB SPL, and a propagation velocity of ca 255 m s−1, an approximately 25% reduction from free field propagation. Modelling tracheal acoustic behaviour that accounts for thermal and viscous effects, we conclude that reduction in sound velocity within the AT can be explained, among others, by heat exchange between the sound wave and the tracheal walls.</description><subject>Acoustic Trachea</subject><subject>Bush-Cricket</subject><subject>Katydid</subject><subject>Life Sciences–Physics interface</subject><subject>Sound Processing</subject><subject>Sound Propagation</subject><subject>Tympanum</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kUtrGzEUhUVJadK02y6LltnY1Xs0WQRC6AsC3bRrodHcqZWMJVcPg_995DgxyaIIpCvud47EPQh9omRJSa-_pOynJSNULYlU5A06o51gC6kUOznWuj9F73O-I4R3XMp36JR1SnNCyBkK13X0JaYdXoNb2eBdxj5gi4eaVwuXvLuHcolHn8AVDFs_QnCA44THamecYw1jE2xqedSVFeBNgpxrgiaaJkiPfFOD30L6gN5Ods7w8ek8R3--ff1982Nx--v7z5vr24UTXJS2MwHM8oEIS60YmBWKgXZimtigrbW0s22pXkvdaUEVE1aOHR16zjqqBn6Org6-mzqsYXQQSrKz2SS_tmlnovXmdSf4lfkbt0YSoXrZNYOLJ4MU_1XIxax9djDPNkCs2VDNpSBC9LKhywPqUsw5wXR8hhKzD8nsQzL7kMw-pCb4_PJzR_w5lQbwA5Dirk0pOg9lZ-5iTaFd_2f7AFB7oYk</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Jonsson, Thorin</creator><creator>Montealegre-Z, Fernando</creator><creator>Soulsbury, Carl D.</creator><creator>Robson Brown, Kate A.</creator><creator>Robert, Daniel</creator><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5049-7612</orcidid></search><sort><creationdate>20160901</creationdate><title>Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver</title><author>Jonsson, Thorin ; Montealegre-Z, Fernando ; Soulsbury, Carl D. ; Robson Brown, Kate A. ; Robert, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-c424e2a3b04a1a4b2a462e8c4ff2b8aaa17a7a7698587841624a5d71b932716b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustic Trachea</topic><topic>Bush-Cricket</topic><topic>Katydid</topic><topic>Life Sciences–Physics interface</topic><topic>Sound Processing</topic><topic>Sound Propagation</topic><topic>Tympanum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonsson, Thorin</creatorcontrib><creatorcontrib>Montealegre-Z, Fernando</creatorcontrib><creatorcontrib>Soulsbury, Carl D.</creatorcontrib><creatorcontrib>Robson Brown, Kate A.</creatorcontrib><creatorcontrib>Robert, Daniel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonsson, Thorin</au><au>Montealegre-Z, Fernando</au><au>Soulsbury, Carl D.</au><au>Robson Brown, Kate A.</au><au>Robert, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J R Soc Interface</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>13</volume><issue>122</issue><spage>20160560</spage><pages>20160560-</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>The ear of the bush-cricket, Copiphora gorgonensis, consists of a system of paired eardrums (tympana) on each foreleg. In these insects, the ear is backed by an air-filled tube, the acoustic trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of the eardrums. Both surfaces of the eardrums of this auditory system are exposed to sound, making it a directionally sensitive pressure difference receiver. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces at the tympanum. The mechanism responsible for reduction in sound velocity in the AT remains elusive, yet it is deemed to depend on adiabatic or isothermal conditions. To investigate the biophysics of such multiple input ears, we used micro-scanning laser Doppler vibrometry and micro-computed X-ray tomography. We measured the velocity of sound propagation in the AT, the transmission gains across auditory frequencies and the time-resolved mechanical dynamics of the tympanal membranes in C. gorgonensis. Tracheal sound transmission generates a gain of approximately 15 dB SPL, and a propagation velocity of ca 255 m s−1, an approximately 25% reduction from free field propagation. Modelling tracheal acoustic behaviour that accounts for thermal and viscous effects, we conclude that reduction in sound velocity within the AT can be explained, among others, by heat exchange between the sound wave and the tracheal walls.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>27683000</pmid><doi>10.1098/rsif.2016.0560</doi><orcidid>https://orcid.org/0000-0002-5049-7612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2016-09, Vol.13 (122), p.20160560
issn 1742-5689
1742-5662
language eng
recordid cdi_proquest_miscellaneous_1835404495
source PubMed Central
subjects Acoustic Trachea
Bush-Cricket
Katydid
Life Sciences–Physics interface
Sound Processing
Sound Propagation
Tympanum
title Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auditory%20mechanics%20in%20a%20bush-cricket:%20direct%20evidence%20of%20dual%20sound%20inputs%20in%20the%20pressure%20difference%20receiver&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Jonsson,%20Thorin&rft.date=2016-09-01&rft.volume=13&rft.issue=122&rft.spage=20160560&rft.pages=20160560-&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2016.0560&rft_dat=%3Cproquest_pubme%3E1835404495%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835404495&rft_id=info:pmid/27683000&rfr_iscdi=true