Computer vision‐based method for classification of wheat grains using artificial neural network

BACKGROUND A simplified computer vision‐based application using artificial neural network (ANN) depending on multilayer perceptron (MLP) for accurately classifying wheat grains into bread or durum is presented. The images of 100 bread and 100 durum wheat grains are taken via a high‐resolution camera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2017-06, Vol.97 (8), p.2588-2593
Hauptverfasser: Sabanci, Kadir, Kayabasi, Ahmet, Toktas, Abdurrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2593
container_issue 8
container_start_page 2588
container_title Journal of the science of food and agriculture
container_volume 97
creator Sabanci, Kadir
Kayabasi, Ahmet
Toktas, Abdurrahim
description BACKGROUND A simplified computer vision‐based application using artificial neural network (ANN) depending on multilayer perceptron (MLP) for accurately classifying wheat grains into bread or durum is presented. The images of 100 bread and 100 durum wheat grains are taken via a high‐resolution camera and subjected to pre‐processing. The main visual features of four dimensions, three colors and five textures are acquired using image‐processing techniques (IPTs). A total of 21 visual features are reproduced from the 12 main features to diversify the input population for training and testing the ANN model. The data sets of visual features are considered as input parameters of the ANN model. The ANN with four different input data subsets is modelled to classify the wheat grains into bread or durum. The ANN model is trained with 180 grains and its accuracy tested with 20 grains from a total of 200 wheat grains. RESULTS Seven input parameters that are most effective on the classifying results are determined using the correlation‐based CfsSubsetEval algorithm to simplify the ANN model. The results of the ANN model are compared in terms of accuracy rate. The best result is achieved with a mean absolute error (MAE) of 9.8 × 10−6 by the simplified ANN model. CONCLUSION This shows that the proposed classifier based on computer vision can be successfully exploited to automatically classify a variety of grains. © 2016 Society of Chemical Industry
doi_str_mv 10.1002/jsfa.8080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835387095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835387095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4190-91827b45428abf46329862cb537e4c809c702f4b7cf9d8d835174b1b0433fe8c3</originalsourceid><addsrcrecordid>eNp10MtO3DAUBmCroirDZcELIEtsYBE4viS2l2gEbRESC9p15Dg2eEjiwU4YseMR-ox9knoY6AKJ1Vmc7_w6-hE6IHBKAOjZIjl9KkHCFzQjoEQBQGALzfKOFiXhdBvtpLQAAKWq6hvapkIQSRnMkJ6HfjmNNuInn3wY_r78aXSyLe7teB9a7ELEptMpeeeNHrPAweHVvdUjvovaDwlPyQ93WMdxTbzu8GCn-DrGVYgPe-ir012y-29zF_2-vPg1_1Fc33z_OT-_LgwnCgqVHxINLzmVunG8YlTJipqmZMJyI0EZAdTxRhinWtlKVhLBG9IAZ8xZadguOt7kLmN4nGwa694nY7tODzZMqSb5hEkBqsz06ANdhCkO-busVAkVI5RmdbJRJoaUonX1Mvpex-eaQL3uvV73Xq97z_bwLXFqetv-l-9FZ3C2ASvf2efPk-qr28vz18h_fdWNkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895063122</pqid></control><display><type>article</type><title>Computer vision‐based method for classification of wheat grains using artificial neural network</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sabanci, Kadir ; Kayabasi, Ahmet ; Toktas, Abdurrahim</creator><creatorcontrib>Sabanci, Kadir ; Kayabasi, Ahmet ; Toktas, Abdurrahim</creatorcontrib><description>BACKGROUND A simplified computer vision‐based application using artificial neural network (ANN) depending on multilayer perceptron (MLP) for accurately classifying wheat grains into bread or durum is presented. The images of 100 bread and 100 durum wheat grains are taken via a high‐resolution camera and subjected to pre‐processing. The main visual features of four dimensions, three colors and five textures are acquired using image‐processing techniques (IPTs). A total of 21 visual features are reproduced from the 12 main features to diversify the input population for training and testing the ANN model. The data sets of visual features are considered as input parameters of the ANN model. The ANN with four different input data subsets is modelled to classify the wheat grains into bread or durum. The ANN model is trained with 180 grains and its accuracy tested with 20 grains from a total of 200 wheat grains. RESULTS Seven input parameters that are most effective on the classifying results are determined using the correlation‐based CfsSubsetEval algorithm to simplify the ANN model. The results of the ANN model are compared in terms of accuracy rate. The best result is achieved with a mean absolute error (MAE) of 9.8 × 10−6 by the simplified ANN model. CONCLUSION This shows that the proposed classifier based on computer vision can be successfully exploited to automatically classify a variety of grains. © 2016 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.8080</identifier><identifier>PMID: 27718230</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Accuracy ; Algorithms ; artificial neural network (ANN) ; Artificial neural networks ; Bread ; Classification ; Computer vision ; Food science ; Grain ; Image acquisition ; Image classification ; Image processing ; Image Processing, Computer-Assisted - methods ; Mathematical models ; multilayer perceptron ; Multilayer perceptrons ; Neural networks ; Neural Networks (Computer) ; Parameters ; Seeds - chemistry ; Seeds - classification ; Triticum - chemistry ; Triticum - classification ; Wheat ; wheat grains</subject><ispartof>Journal of the science of food and agriculture, 2017-06, Vol.97 (8), p.2588-2593</ispartof><rights>2016 Society of Chemical Industry</rights><rights>2016 Society of Chemical Industry.</rights><rights>2017 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4190-91827b45428abf46329862cb537e4c809c702f4b7cf9d8d835174b1b0433fe8c3</citedby><cites>FETCH-LOGICAL-c4190-91827b45428abf46329862cb537e4c809c702f4b7cf9d8d835174b1b0433fe8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.8080$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.8080$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27718230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabanci, Kadir</creatorcontrib><creatorcontrib>Kayabasi, Ahmet</creatorcontrib><creatorcontrib>Toktas, Abdurrahim</creatorcontrib><title>Computer vision‐based method for classification of wheat grains using artificial neural network</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND A simplified computer vision‐based application using artificial neural network (ANN) depending on multilayer perceptron (MLP) for accurately classifying wheat grains into bread or durum is presented. The images of 100 bread and 100 durum wheat grains are taken via a high‐resolution camera and subjected to pre‐processing. The main visual features of four dimensions, three colors and five textures are acquired using image‐processing techniques (IPTs). A total of 21 visual features are reproduced from the 12 main features to diversify the input population for training and testing the ANN model. The data sets of visual features are considered as input parameters of the ANN model. The ANN with four different input data subsets is modelled to classify the wheat grains into bread or durum. The ANN model is trained with 180 grains and its accuracy tested with 20 grains from a total of 200 wheat grains. RESULTS Seven input parameters that are most effective on the classifying results are determined using the correlation‐based CfsSubsetEval algorithm to simplify the ANN model. The results of the ANN model are compared in terms of accuracy rate. The best result is achieved with a mean absolute error (MAE) of 9.8 × 10−6 by the simplified ANN model. CONCLUSION This shows that the proposed classifier based on computer vision can be successfully exploited to automatically classify a variety of grains. © 2016 Society of Chemical Industry</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Bread</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Food science</subject><subject>Grain</subject><subject>Image acquisition</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Mathematical models</subject><subject>multilayer perceptron</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Parameters</subject><subject>Seeds - chemistry</subject><subject>Seeds - classification</subject><subject>Triticum - chemistry</subject><subject>Triticum - classification</subject><subject>Wheat</subject><subject>wheat grains</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10MtO3DAUBmCroirDZcELIEtsYBE4viS2l2gEbRESC9p15Dg2eEjiwU4YseMR-ox9knoY6AKJ1Vmc7_w6-hE6IHBKAOjZIjl9KkHCFzQjoEQBQGALzfKOFiXhdBvtpLQAAKWq6hvapkIQSRnMkJ6HfjmNNuInn3wY_r78aXSyLe7teB9a7ELEptMpeeeNHrPAweHVvdUjvovaDwlPyQ93WMdxTbzu8GCn-DrGVYgPe-ir012y-29zF_2-vPg1_1Fc33z_OT-_LgwnCgqVHxINLzmVunG8YlTJipqmZMJyI0EZAdTxRhinWtlKVhLBG9IAZ8xZadguOt7kLmN4nGwa694nY7tODzZMqSb5hEkBqsz06ANdhCkO-busVAkVI5RmdbJRJoaUonX1Mvpex-eaQL3uvV73Xq97z_bwLXFqetv-l-9FZ3C2ASvf2efPk-qr28vz18h_fdWNkQ</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Sabanci, Kadir</creator><creator>Kayabasi, Ahmet</creator><creator>Toktas, Abdurrahim</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>Computer vision‐based method for classification of wheat grains using artificial neural network</title><author>Sabanci, Kadir ; Kayabasi, Ahmet ; Toktas, Abdurrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4190-91827b45428abf46329862cb537e4c809c702f4b7cf9d8d835174b1b0433fe8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Bread</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Food science</topic><topic>Grain</topic><topic>Image acquisition</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Mathematical models</topic><topic>multilayer perceptron</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Parameters</topic><topic>Seeds - chemistry</topic><topic>Seeds - classification</topic><topic>Triticum - chemistry</topic><topic>Triticum - classification</topic><topic>Wheat</topic><topic>wheat grains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabanci, Kadir</creatorcontrib><creatorcontrib>Kayabasi, Ahmet</creatorcontrib><creatorcontrib>Toktas, Abdurrahim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabanci, Kadir</au><au>Kayabasi, Ahmet</au><au>Toktas, Abdurrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer vision‐based method for classification of wheat grains using artificial neural network</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2017-06</date><risdate>2017</risdate><volume>97</volume><issue>8</issue><spage>2588</spage><epage>2593</epage><pages>2588-2593</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND A simplified computer vision‐based application using artificial neural network (ANN) depending on multilayer perceptron (MLP) for accurately classifying wheat grains into bread or durum is presented. The images of 100 bread and 100 durum wheat grains are taken via a high‐resolution camera and subjected to pre‐processing. The main visual features of four dimensions, three colors and five textures are acquired using image‐processing techniques (IPTs). A total of 21 visual features are reproduced from the 12 main features to diversify the input population for training and testing the ANN model. The data sets of visual features are considered as input parameters of the ANN model. The ANN with four different input data subsets is modelled to classify the wheat grains into bread or durum. The ANN model is trained with 180 grains and its accuracy tested with 20 grains from a total of 200 wheat grains. RESULTS Seven input parameters that are most effective on the classifying results are determined using the correlation‐based CfsSubsetEval algorithm to simplify the ANN model. The results of the ANN model are compared in terms of accuracy rate. The best result is achieved with a mean absolute error (MAE) of 9.8 × 10−6 by the simplified ANN model. CONCLUSION This shows that the proposed classifier based on computer vision can be successfully exploited to automatically classify a variety of grains. © 2016 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>27718230</pmid><doi>10.1002/jsfa.8080</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2017-06, Vol.97 (8), p.2588-2593
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_1835387095
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Accuracy
Algorithms
artificial neural network (ANN)
Artificial neural networks
Bread
Classification
Computer vision
Food science
Grain
Image acquisition
Image classification
Image processing
Image Processing, Computer-Assisted - methods
Mathematical models
multilayer perceptron
Multilayer perceptrons
Neural networks
Neural Networks (Computer)
Parameters
Seeds - chemistry
Seeds - classification
Triticum - chemistry
Triticum - classification
Wheat
wheat grains
title Computer vision‐based method for classification of wheat grains using artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20vision%E2%80%90based%20method%20for%20classification%20of%20wheat%20grains%20using%20artificial%20neural%20network&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Sabanci,%20Kadir&rft.date=2017-06&rft.volume=97&rft.issue=8&rft.spage=2588&rft.epage=2593&rft.pages=2588-2593&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.8080&rft_dat=%3Cproquest_cross%3E1835387095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1895063122&rft_id=info:pmid/27718230&rfr_iscdi=true