The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors

Low‐energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon‐based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2016-10, Vol.55 (44), p.13822-13827
Hauptverfasser: Chen, Jiafeng, Han, Yulei, Kong, Xianghua, Deng, Xinzhou, Park, Hyo Ju, Guo, Yali, Jin, Song, Qi, Zhikai, Lee, Zonghoon, Qiao, Zhenhua, Ruoff, Rodney S., Ji, Hengxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13827
container_issue 44
container_start_page 13822
container_title Angewandte Chemie International Edition
container_volume 55
creator Chen, Jiafeng
Han, Yulei
Kong, Xianghua
Deng, Xinzhou
Park, Hyo Ju
Guo, Yali
Jin, Song
Qi, Zhikai
Lee, Zonghoon
Qiao, Zhenhua
Ruoff, Rodney S.
Ji, Hengxing
description Low‐energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon‐based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD‐derived single‐layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double‐layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic‐scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. Dopants, defects, and double layers: Electrochemical measurements and ab initio calculations on single‐layer CVD‐grown graphene show that topological defects improve the density of states and N‐dopants can tune the Fermi level of graphene, both of which influence the quantum capacitance connected in series with the Helmholtz capacitance and therefore modify the electrical double‐layer (EDL) capacitance.
doi_str_mv 10.1002/anie.201605926
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835379263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907284295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5426-d863bb4d0c4b74c97b834435265e629bf462dc6ccc8069beb2db108159ecf4eb3</originalsourceid><addsrcrecordid>eNqFkc2O0zAURiMEYobCliWyxIZNiv_tLEellErVjBBFldhYtnMzkyGNg90AfQWeGg8ZKsQCVr6L8x37-iuK5wTPCcb0te1bmFNMJBYVlQ-KcyIoKZlS7GGeOWOl0oKcFU9Sus281lg-Ls6oUphoos6LH9sbQFexvW57FBq03g8xfIUaLTvwh9h626E3YXQdlBt7hIgWdrC-PdjeA3JHtO59N6Y2_ApvwxC6cD2FoMmChGxfZ8Fg-zznK1bRDjfQA2pCRB_GAaKfhCGmp8WjxnYJnt2fs-Lj2-V28a7cXK3Wi4tN6QWnsqy1ZM7xGnvuFPeVcppxzgSVAiStXMMlrb303uddKweO1o5gTUQFvuHg2Kx4NXnzql9GSAezb5OHrrM9hDEZoplgKv8my-jLv9DbMMY-v86QCiuqOa3EPynNsMyV5AfOivlE-RhSitCYIbZ7G4-GYHPXpbnr0py6zIEX99rR7aE-4b_Ly0A1Ad_aDo7_0ZmLy_XyT3k5Zdt0gO-nrI2fjVRMCbO7XJnF7r36JHbcKPYTQlq6UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830615244</pqid></control><display><type>article</type><title>The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Jiafeng ; Han, Yulei ; Kong, Xianghua ; Deng, Xinzhou ; Park, Hyo Ju ; Guo, Yali ; Jin, Song ; Qi, Zhikai ; Lee, Zonghoon ; Qiao, Zhenhua ; Ruoff, Rodney S. ; Ji, Hengxing</creator><creatorcontrib>Chen, Jiafeng ; Han, Yulei ; Kong, Xianghua ; Deng, Xinzhou ; Park, Hyo Ju ; Guo, Yali ; Jin, Song ; Qi, Zhikai ; Lee, Zonghoon ; Qiao, Zhenhua ; Ruoff, Rodney S. ; Ji, Hengxing</creatorcontrib><description>Low‐energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon‐based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD‐derived single‐layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double‐layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic‐scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. Dopants, defects, and double layers: Electrochemical measurements and ab initio calculations on single‐layer CVD‐grown graphene show that topological defects improve the density of states and N‐dopants can tune the Fermi level of graphene, both of which influence the quantum capacitance connected in series with the Helmholtz capacitance and therefore modify the electrical double‐layer (EDL) capacitance.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201605926</identifier><identifier>PMID: 27701817</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Atomic structure ; Capacitance ; Carbon ; Correlation ; Defects ; Density ; Dopants ; electrical double-layers ; Electrodes ; Electrons ; Energy ; Flux density ; Graphene ; Gravimetry ; Mathematical models ; Nitrogen ; nitrogen dopants ; quantum capacitance ; single-layer graphene ; Supercapacitors ; topological defects ; Topology</subject><ispartof>Angewandte Chemie International Edition, 2016-10, Vol.55 (44), p.13822-13827</ispartof><rights>2016 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5426-d863bb4d0c4b74c97b834435265e629bf462dc6ccc8069beb2db108159ecf4eb3</citedby><cites>FETCH-LOGICAL-c5426-d863bb4d0c4b74c97b834435265e629bf462dc6ccc8069beb2db108159ecf4eb3</cites><orcidid>0000-0003-2851-9878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201605926$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201605926$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27701817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jiafeng</creatorcontrib><creatorcontrib>Han, Yulei</creatorcontrib><creatorcontrib>Kong, Xianghua</creatorcontrib><creatorcontrib>Deng, Xinzhou</creatorcontrib><creatorcontrib>Park, Hyo Ju</creatorcontrib><creatorcontrib>Guo, Yali</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><creatorcontrib>Qi, Zhikai</creatorcontrib><creatorcontrib>Lee, Zonghoon</creatorcontrib><creatorcontrib>Qiao, Zhenhua</creatorcontrib><creatorcontrib>Ruoff, Rodney S.</creatorcontrib><creatorcontrib>Ji, Hengxing</creatorcontrib><title>The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Low‐energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon‐based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD‐derived single‐layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double‐layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic‐scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. Dopants, defects, and double layers: Electrochemical measurements and ab initio calculations on single‐layer CVD‐grown graphene show that topological defects improve the density of states and N‐dopants can tune the Fermi level of graphene, both of which influence the quantum capacitance connected in series with the Helmholtz capacitance and therefore modify the electrical double‐layer (EDL) capacitance.</description><subject>Atomic structure</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Correlation</subject><subject>Defects</subject><subject>Density</subject><subject>Dopants</subject><subject>electrical double-layers</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Energy</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Gravimetry</subject><subject>Mathematical models</subject><subject>Nitrogen</subject><subject>nitrogen dopants</subject><subject>quantum capacitance</subject><subject>single-layer graphene</subject><subject>Supercapacitors</subject><subject>topological defects</subject><subject>Topology</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc2O0zAURiMEYobCliWyxIZNiv_tLEellErVjBBFldhYtnMzkyGNg90AfQWeGg8ZKsQCVr6L8x37-iuK5wTPCcb0te1bmFNMJBYVlQ-KcyIoKZlS7GGeOWOl0oKcFU9Sus281lg-Ls6oUphoos6LH9sbQFexvW57FBq03g8xfIUaLTvwh9h626E3YXQdlBt7hIgWdrC-PdjeA3JHtO59N6Y2_ApvwxC6cD2FoMmChGxfZ8Fg-zznK1bRDjfQA2pCRB_GAaKfhCGmp8WjxnYJnt2fs-Lj2-V28a7cXK3Wi4tN6QWnsqy1ZM7xGnvuFPeVcppxzgSVAiStXMMlrb303uddKweO1o5gTUQFvuHg2Kx4NXnzql9GSAezb5OHrrM9hDEZoplgKv8my-jLv9DbMMY-v86QCiuqOa3EPynNsMyV5AfOivlE-RhSitCYIbZ7G4-GYHPXpbnr0py6zIEX99rR7aE-4b_Ly0A1Ad_aDo7_0ZmLy_XyT3k5Zdt0gO-nrI2fjVRMCbO7XJnF7r36JHbcKPYTQlq6UQ</recordid><startdate>20161024</startdate><enddate>20161024</enddate><creator>Chen, Jiafeng</creator><creator>Han, Yulei</creator><creator>Kong, Xianghua</creator><creator>Deng, Xinzhou</creator><creator>Park, Hyo Ju</creator><creator>Guo, Yali</creator><creator>Jin, Song</creator><creator>Qi, Zhikai</creator><creator>Lee, Zonghoon</creator><creator>Qiao, Zhenhua</creator><creator>Ruoff, Rodney S.</creator><creator>Ji, Hengxing</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2851-9878</orcidid></search><sort><creationdate>20161024</creationdate><title>The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors</title><author>Chen, Jiafeng ; Han, Yulei ; Kong, Xianghua ; Deng, Xinzhou ; Park, Hyo Ju ; Guo, Yali ; Jin, Song ; Qi, Zhikai ; Lee, Zonghoon ; Qiao, Zhenhua ; Ruoff, Rodney S. ; Ji, Hengxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5426-d863bb4d0c4b74c97b834435265e629bf462dc6ccc8069beb2db108159ecf4eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atomic structure</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Correlation</topic><topic>Defects</topic><topic>Density</topic><topic>Dopants</topic><topic>electrical double-layers</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Energy</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Gravimetry</topic><topic>Mathematical models</topic><topic>Nitrogen</topic><topic>nitrogen dopants</topic><topic>quantum capacitance</topic><topic>single-layer graphene</topic><topic>Supercapacitors</topic><topic>topological defects</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiafeng</creatorcontrib><creatorcontrib>Han, Yulei</creatorcontrib><creatorcontrib>Kong, Xianghua</creatorcontrib><creatorcontrib>Deng, Xinzhou</creatorcontrib><creatorcontrib>Park, Hyo Ju</creatorcontrib><creatorcontrib>Guo, Yali</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><creatorcontrib>Qi, Zhikai</creatorcontrib><creatorcontrib>Lee, Zonghoon</creatorcontrib><creatorcontrib>Qiao, Zhenhua</creatorcontrib><creatorcontrib>Ruoff, Rodney S.</creatorcontrib><creatorcontrib>Ji, Hengxing</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiafeng</au><au>Han, Yulei</au><au>Kong, Xianghua</au><au>Deng, Xinzhou</au><au>Park, Hyo Ju</au><au>Guo, Yali</au><au>Jin, Song</au><au>Qi, Zhikai</au><au>Lee, Zonghoon</au><au>Qiao, Zhenhua</au><au>Ruoff, Rodney S.</au><au>Ji, Hengxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2016-10-24</date><risdate>2016</risdate><volume>55</volume><issue>44</issue><spage>13822</spage><epage>13827</epage><pages>13822-13827</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Low‐energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon‐based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD‐derived single‐layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double‐layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic‐scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. Dopants, defects, and double layers: Electrochemical measurements and ab initio calculations on single‐layer CVD‐grown graphene show that topological defects improve the density of states and N‐dopants can tune the Fermi level of graphene, both of which influence the quantum capacitance connected in series with the Helmholtz capacitance and therefore modify the electrical double‐layer (EDL) capacitance.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27701817</pmid><doi>10.1002/anie.201605926</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2851-9878</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2016-10, Vol.55 (44), p.13822-13827
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1835379263
source Wiley Online Library Journals Frontfile Complete
subjects Atomic structure
Capacitance
Carbon
Correlation
Defects
Density
Dopants
electrical double-layers
Electrodes
Electrons
Energy
Flux density
Graphene
Gravimetry
Mathematical models
Nitrogen
nitrogen dopants
quantum capacitance
single-layer graphene
Supercapacitors
topological defects
Topology
title The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Origin%20of%20Improved%20Electrical%20Double-Layer%20Capacitance%20by%20Inclusion%20of%20Topological%20Defects%20and%20Dopants%20in%20Graphene%20for%20Supercapacitors&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Chen,%20Jiafeng&rft.date=2016-10-24&rft.volume=55&rft.issue=44&rft.spage=13822&rft.epage=13827&rft.pages=13822-13827&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201605926&rft_dat=%3Cproquest_cross%3E1907284295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830615244&rft_id=info:pmid/27701817&rfr_iscdi=true