Genomic diversification of marine cyanophages into stable ecotypes

Summary Understanding the structure and origin of natural bacteriophage genomic diversity is important in elucidating how bacteriophages influence the mortality rates and composition of their host communities. Here, we examine the genetic structure and genomic diversification of naturally occurring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2016-11, Vol.18 (11), p.4240-4253
Hauptverfasser: Marston, Marcia F., Martiny, Jennifer B. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4253
container_issue 11
container_start_page 4240
container_title Environmental microbiology
container_volume 18
creator Marston, Marcia F.
Martiny, Jennifer B. H.
description Summary Understanding the structure and origin of natural bacteriophage genomic diversity is important in elucidating how bacteriophages influence the mortality rates and composition of their host communities. Here, we examine the genetic structure and genomic diversification of naturally occurring bacteriophages by analyzing the full genomic sequences of over 100 isolates of Synechococcus‐infecting cyanophages collected over 15 years from coastal waters of Southern New England, USA. Our analysis revealed well‐supported cyanophage genomic clusters (genome‐wide average nucleotide identity (ANI) >93%) and subclusters (genome‐wide ANI >98%) that remained consistent for a decade or longer. Furthermore, by combining the genomic data with genetic analysis of an additional 800 isolates and environmental amplicon sequence data both genomic clusters and subclusters were found to exhibit clear temporal and/or spatial patterns of abundance, suggesting that these units represent distinct viral ecotypes. The processes responsible for diversification of cyanophages into genomic clusters and subclusters were similar across genetic scales and included allelic exchange as well as gene gain and loss. Isolates belonging to different subclusters were found to differ in genes that encoded auxiliary metabolic functions, restriction modification enzymes, and virion structural proteins, although the specific traits and selection pressures responsible for the maintenance of distinct ecotypes remain unknown.
doi_str_mv 10.1111/1462-2920.13556
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835371014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4266186021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4506-9f80e021d5ac35ef709b456f87ead3669e19310a753cfe6cf443bb4ffff63a433</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EoqUws6FILCyhdvxIM0LVp0pZQIyW416DSxqXOAX673HpY2DhLte--s7R9TFClwTfklBtwkQSJ1kSrpRzcYSah8nx4UySBjrzfo4xSWmKT1EjSUUmBKNNdD-A0i2sjmb2EypvjdWqtq6MnIkWqrIlRHqtSrd8U6_gI1vWLvK1yguIQLt6vQR_jk6MKjxc7HoLPfd7T91hPHkcjLp3k1gzjkWcmQ4GnJAZV5pyMCnOcsaF6aSgZlSIDEhGCVYpp9qA0IYxmufMhBJUMUpb6Gbru6zcxwp8LRfWaygKVYJbeUk6lNOUYMICev0HnbtVVYbtAsVYh1PMs0C1t5SunPcVGLmsbHj0WhIsN_HKTYByE6b8jTcorna-q3wBswO_zzMAfAt82QLW__nJ3sNobxxvddbX8H3QqepdivBnXL5MB1KM00l_PB3KMf0B5X6ShA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844853059</pqid></control><display><type>article</type><title>Genomic diversification of marine cyanophages into stable ecotypes</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Marston, Marcia F. ; Martiny, Jennifer B. H.</creator><creatorcontrib>Marston, Marcia F. ; Martiny, Jennifer B. H.</creatorcontrib><description>Summary Understanding the structure and origin of natural bacteriophage genomic diversity is important in elucidating how bacteriophages influence the mortality rates and composition of their host communities. Here, we examine the genetic structure and genomic diversification of naturally occurring bacteriophages by analyzing the full genomic sequences of over 100 isolates of Synechococcus‐infecting cyanophages collected over 15 years from coastal waters of Southern New England, USA. Our analysis revealed well‐supported cyanophage genomic clusters (genome‐wide average nucleotide identity (ANI) &gt;93%) and subclusters (genome‐wide ANI &gt;98%) that remained consistent for a decade or longer. Furthermore, by combining the genomic data with genetic analysis of an additional 800 isolates and environmental amplicon sequence data both genomic clusters and subclusters were found to exhibit clear temporal and/or spatial patterns of abundance, suggesting that these units represent distinct viral ecotypes. The processes responsible for diversification of cyanophages into genomic clusters and subclusters were similar across genetic scales and included allelic exchange as well as gene gain and loss. Isolates belonging to different subclusters were found to differ in genes that encoded auxiliary metabolic functions, restriction modification enzymes, and virion structural proteins, although the specific traits and selection pressures responsible for the maintenance of distinct ecotypes remain unknown.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.13556</identifier><identifier>PMID: 27696643</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacteriophages - classification ; Bacteriophages - genetics ; Bacteriophages - isolation &amp; purification ; Diversification ; Ecotype ; Genes ; Genome, Viral ; Genomes ; Genomics ; Mortality ; New England ; Seawater - microbiology ; Seawater - virology ; Synechococcus - virology</subject><ispartof>Environmental microbiology, 2016-11, Vol.18 (11), p.4240-4253</ispartof><rights>2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2016 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4506-9f80e021d5ac35ef709b456f87ead3669e19310a753cfe6cf443bb4ffff63a433</citedby><cites>FETCH-LOGICAL-c4506-9f80e021d5ac35ef709b456f87ead3669e19310a753cfe6cf443bb4ffff63a433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.13556$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.13556$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27696643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marston, Marcia F.</creatorcontrib><creatorcontrib>Martiny, Jennifer B. H.</creatorcontrib><title>Genomic diversification of marine cyanophages into stable ecotypes</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Understanding the structure and origin of natural bacteriophage genomic diversity is important in elucidating how bacteriophages influence the mortality rates and composition of their host communities. Here, we examine the genetic structure and genomic diversification of naturally occurring bacteriophages by analyzing the full genomic sequences of over 100 isolates of Synechococcus‐infecting cyanophages collected over 15 years from coastal waters of Southern New England, USA. Our analysis revealed well‐supported cyanophage genomic clusters (genome‐wide average nucleotide identity (ANI) &gt;93%) and subclusters (genome‐wide ANI &gt;98%) that remained consistent for a decade or longer. Furthermore, by combining the genomic data with genetic analysis of an additional 800 isolates and environmental amplicon sequence data both genomic clusters and subclusters were found to exhibit clear temporal and/or spatial patterns of abundance, suggesting that these units represent distinct viral ecotypes. The processes responsible for diversification of cyanophages into genomic clusters and subclusters were similar across genetic scales and included allelic exchange as well as gene gain and loss. Isolates belonging to different subclusters were found to differ in genes that encoded auxiliary metabolic functions, restriction modification enzymes, and virion structural proteins, although the specific traits and selection pressures responsible for the maintenance of distinct ecotypes remain unknown.</description><subject>Bacteriophages - classification</subject><subject>Bacteriophages - genetics</subject><subject>Bacteriophages - isolation &amp; purification</subject><subject>Diversification</subject><subject>Ecotype</subject><subject>Genes</subject><subject>Genome, Viral</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Mortality</subject><subject>New England</subject><subject>Seawater - microbiology</subject><subject>Seawater - virology</subject><subject>Synechococcus - virology</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkTtPwzAUhS0EoqUws6FILCyhdvxIM0LVp0pZQIyW416DSxqXOAX673HpY2DhLte--s7R9TFClwTfklBtwkQSJ1kSrpRzcYSah8nx4UySBjrzfo4xSWmKT1EjSUUmBKNNdD-A0i2sjmb2EypvjdWqtq6MnIkWqrIlRHqtSrd8U6_gI1vWLvK1yguIQLt6vQR_jk6MKjxc7HoLPfd7T91hPHkcjLp3k1gzjkWcmQ4GnJAZV5pyMCnOcsaF6aSgZlSIDEhGCVYpp9qA0IYxmufMhBJUMUpb6Gbru6zcxwp8LRfWaygKVYJbeUk6lNOUYMICev0HnbtVVYbtAsVYh1PMs0C1t5SunPcVGLmsbHj0WhIsN_HKTYByE6b8jTcorna-q3wBswO_zzMAfAt82QLW__nJ3sNobxxvddbX8H3QqepdivBnXL5MB1KM00l_PB3KMf0B5X6ShA</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Marston, Marcia F.</creator><creator>Martiny, Jennifer B. H.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201611</creationdate><title>Genomic diversification of marine cyanophages into stable ecotypes</title><author>Marston, Marcia F. ; Martiny, Jennifer B. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4506-9f80e021d5ac35ef709b456f87ead3669e19310a753cfe6cf443bb4ffff63a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacteriophages - classification</topic><topic>Bacteriophages - genetics</topic><topic>Bacteriophages - isolation &amp; purification</topic><topic>Diversification</topic><topic>Ecotype</topic><topic>Genes</topic><topic>Genome, Viral</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Mortality</topic><topic>New England</topic><topic>Seawater - microbiology</topic><topic>Seawater - virology</topic><topic>Synechococcus - virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marston, Marcia F.</creatorcontrib><creatorcontrib>Martiny, Jennifer B. H.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marston, Marcia F.</au><au>Martiny, Jennifer B. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic diversification of marine cyanophages into stable ecotypes</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2016-11</date><risdate>2016</risdate><volume>18</volume><issue>11</issue><spage>4240</spage><epage>4253</epage><pages>4240-4253</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Understanding the structure and origin of natural bacteriophage genomic diversity is important in elucidating how bacteriophages influence the mortality rates and composition of their host communities. Here, we examine the genetic structure and genomic diversification of naturally occurring bacteriophages by analyzing the full genomic sequences of over 100 isolates of Synechococcus‐infecting cyanophages collected over 15 years from coastal waters of Southern New England, USA. Our analysis revealed well‐supported cyanophage genomic clusters (genome‐wide average nucleotide identity (ANI) &gt;93%) and subclusters (genome‐wide ANI &gt;98%) that remained consistent for a decade or longer. Furthermore, by combining the genomic data with genetic analysis of an additional 800 isolates and environmental amplicon sequence data both genomic clusters and subclusters were found to exhibit clear temporal and/or spatial patterns of abundance, suggesting that these units represent distinct viral ecotypes. The processes responsible for diversification of cyanophages into genomic clusters and subclusters were similar across genetic scales and included allelic exchange as well as gene gain and loss. Isolates belonging to different subclusters were found to differ in genes that encoded auxiliary metabolic functions, restriction modification enzymes, and virion structural proteins, although the specific traits and selection pressures responsible for the maintenance of distinct ecotypes remain unknown.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27696643</pmid><doi>10.1111/1462-2920.13556</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2016-11, Vol.18 (11), p.4240-4253
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_1835371014
source MEDLINE; Access via Wiley Online Library
subjects Bacteriophages - classification
Bacteriophages - genetics
Bacteriophages - isolation & purification
Diversification
Ecotype
Genes
Genome, Viral
Genomes
Genomics
Mortality
New England
Seawater - microbiology
Seawater - virology
Synechococcus - virology
title Genomic diversification of marine cyanophages into stable ecotypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20diversification%20of%20marine%20cyanophages%20into%20stable%20ecotypes&rft.jtitle=Environmental%20microbiology&rft.au=Marston,%20Marcia%20F.&rft.date=2016-11&rft.volume=18&rft.issue=11&rft.spage=4240&rft.epage=4253&rft.pages=4240-4253&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.13556&rft_dat=%3Cproquest_cross%3E4266186021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844853059&rft_id=info:pmid/27696643&rfr_iscdi=true