Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor
Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO₃⁻) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concen...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2016-10, Vol.172 (2), p.1237-1248 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1248 |
---|---|
container_issue | 2 |
container_start_page | 1237 |
container_title | Plant physiology (Bethesda) |
container_volume | 172 |
creator | Bouguyon, Eléonore Perrine-Walker, Francine Pervent, Marjorie Rochette, Juliette Cuesta, Candela Benkova, Eva Martinière, Alexandre Bach, Lien Krouk, Gabriel Gojon, Alain Nacry, Philippe |
description | Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO₃⁻) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO₃⁻ through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO₃⁻. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO₃⁻ stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO₃⁻ mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue. |
doi_str_mv | 10.1104/pp.16.01047 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835370382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24854531</jstor_id><sourcerecordid>24854531</sourcerecordid><originalsourceid>FETCH-LOGICAL-j233t-c0c1d456f232b7a853dc5c56b956cf62aabff1cd4cf64e557387be9ba7b7a8a63</originalsourceid><addsrcrecordid>eNpF0D1PwzAQBmALgWgpTMwgjyxJ_Zm4IyoUkKpSlTJHjuO0qZLY2A4S_55ELWK699U9uuEAuMUoxhixqbUxTmLUx_QMjDGnJCKciXMwRqjPSIjZCFx5f0AIYYrZJRiRlDOKMR8Du6qCk0HDuWmDM7WHG2MCfNLfuja20W2AYe9Mt9vDtfGht61XrrKhMq2s4UbvuloOBZqylxquNlsc4-lqvUhiCreDt8YF7aYfuvXGXYOLUtZe35zmBHwunrfz12j5_vI2f1xGB0JpiBRSuGA8KQkleSoFp4Xiiif5jCeqTIiUeVliVbC-MM15SkWa61ku00HLhE7Aw_Gudear0z5kTeWVrmvZatP5DAvKaYqoID29P9Eub3SRWVc10v1kf1_qwd0RHHww7n_PBGecYvoLZpFzvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835370382</pqid></control><display><type>article</type><title>Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bouguyon, Eléonore ; Perrine-Walker, Francine ; Pervent, Marjorie ; Rochette, Juliette ; Cuesta, Candela ; Benkova, Eva ; Martinière, Alexandre ; Bach, Lien ; Krouk, Gabriel ; Gojon, Alain ; Nacry, Philippe</creator><creatorcontrib>Bouguyon, Eléonore ; Perrine-Walker, Francine ; Pervent, Marjorie ; Rochette, Juliette ; Cuesta, Candela ; Benkova, Eva ; Martinière, Alexandre ; Bach, Lien ; Krouk, Gabriel ; Gojon, Alain ; Nacry, Philippe</creatorcontrib><description>Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO₃⁻) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO₃⁻ through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO₃⁻. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO₃⁻ stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO₃⁻ mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.16.01047</identifier><identifier>PMID: 27543115</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Anion Transport Proteins - genetics ; Anion Transport Proteins - metabolism ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Gene Expression Regulation, Plant ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Meristem - genetics ; Meristem - metabolism ; Microscopy, Confocal ; Mutation ; Nitrates - metabolism ; Organ Specificity - genetics ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - genetics ; Plant Roots - metabolism ; Plants, Genetically Modified ; Red Fluorescent Protein ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Stability - genetics ; SIGNALING AND RESPONSE</subject><ispartof>Plant physiology (Bethesda), 2016-10, Vol.172 (2), p.1237-1248</ispartof><rights>Copyright © 2016 American Society of Plant Biologists</rights><rights>2016 American Society of Plant Biologists. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8510-9739 ; 0000-0002-6501-5823 ; 0000-0003-1923-2410 ; 0000-0003-3693-6735 ; 0000-0001-8496-2474 ; 0000-0001-7766-4989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24854531$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24854531$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27543115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouguyon, Eléonore</creatorcontrib><creatorcontrib>Perrine-Walker, Francine</creatorcontrib><creatorcontrib>Pervent, Marjorie</creatorcontrib><creatorcontrib>Rochette, Juliette</creatorcontrib><creatorcontrib>Cuesta, Candela</creatorcontrib><creatorcontrib>Benkova, Eva</creatorcontrib><creatorcontrib>Martinière, Alexandre</creatorcontrib><creatorcontrib>Bach, Lien</creatorcontrib><creatorcontrib>Krouk, Gabriel</creatorcontrib><creatorcontrib>Gojon, Alain</creatorcontrib><creatorcontrib>Nacry, Philippe</creatorcontrib><title>Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO₃⁻) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO₃⁻ through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO₃⁻. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO₃⁻ stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO₃⁻ mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue.</description><subject>Anion Transport Proteins - genetics</subject><subject>Anion Transport Proteins - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Meristem - genetics</subject><subject>Meristem - metabolism</subject><subject>Microscopy, Confocal</subject><subject>Mutation</subject><subject>Nitrates - metabolism</subject><subject>Organ Specificity - genetics</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Red Fluorescent Protein</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Stability - genetics</subject><subject>SIGNALING AND RESPONSE</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0D1PwzAQBmALgWgpTMwgjyxJ_Zm4IyoUkKpSlTJHjuO0qZLY2A4S_55ELWK699U9uuEAuMUoxhixqbUxTmLUx_QMjDGnJCKciXMwRqjPSIjZCFx5f0AIYYrZJRiRlDOKMR8Du6qCk0HDuWmDM7WHG2MCfNLfuja20W2AYe9Mt9vDtfGht61XrrKhMq2s4UbvuloOBZqylxquNlsc4-lqvUhiCreDt8YF7aYfuvXGXYOLUtZe35zmBHwunrfz12j5_vI2f1xGB0JpiBRSuGA8KQkleSoFp4Xiiif5jCeqTIiUeVliVbC-MM15SkWa61ku00HLhE7Aw_Gudear0z5kTeWVrmvZatP5DAvKaYqoID29P9Eub3SRWVc10v1kf1_qwd0RHHww7n_PBGecYvoLZpFzvQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Bouguyon, Eléonore</creator><creator>Perrine-Walker, Francine</creator><creator>Pervent, Marjorie</creator><creator>Rochette, Juliette</creator><creator>Cuesta, Candela</creator><creator>Benkova, Eva</creator><creator>Martinière, Alexandre</creator><creator>Bach, Lien</creator><creator>Krouk, Gabriel</creator><creator>Gojon, Alain</creator><creator>Nacry, Philippe</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8510-9739</orcidid><orcidid>https://orcid.org/0000-0002-6501-5823</orcidid><orcidid>https://orcid.org/0000-0003-1923-2410</orcidid><orcidid>https://orcid.org/0000-0003-3693-6735</orcidid><orcidid>https://orcid.org/0000-0001-8496-2474</orcidid><orcidid>https://orcid.org/0000-0001-7766-4989</orcidid></search><sort><creationdate>20161001</creationdate><title>Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor</title><author>Bouguyon, Eléonore ; Perrine-Walker, Francine ; Pervent, Marjorie ; Rochette, Juliette ; Cuesta, Candela ; Benkova, Eva ; Martinière, Alexandre ; Bach, Lien ; Krouk, Gabriel ; Gojon, Alain ; Nacry, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j233t-c0c1d456f232b7a853dc5c56b956cf62aabff1cd4cf64e557387be9ba7b7a8a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anion Transport Proteins - genetics</topic><topic>Anion Transport Proteins - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Meristem - genetics</topic><topic>Meristem - metabolism</topic><topic>Microscopy, Confocal</topic><topic>Mutation</topic><topic>Nitrates - metabolism</topic><topic>Organ Specificity - genetics</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Red Fluorescent Protein</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Stability - genetics</topic><topic>SIGNALING AND RESPONSE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouguyon, Eléonore</creatorcontrib><creatorcontrib>Perrine-Walker, Francine</creatorcontrib><creatorcontrib>Pervent, Marjorie</creatorcontrib><creatorcontrib>Rochette, Juliette</creatorcontrib><creatorcontrib>Cuesta, Candela</creatorcontrib><creatorcontrib>Benkova, Eva</creatorcontrib><creatorcontrib>Martinière, Alexandre</creatorcontrib><creatorcontrib>Bach, Lien</creatorcontrib><creatorcontrib>Krouk, Gabriel</creatorcontrib><creatorcontrib>Gojon, Alain</creatorcontrib><creatorcontrib>Nacry, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouguyon, Eléonore</au><au>Perrine-Walker, Francine</au><au>Pervent, Marjorie</au><au>Rochette, Juliette</au><au>Cuesta, Candela</au><au>Benkova, Eva</au><au>Martinière, Alexandre</au><au>Bach, Lien</au><au>Krouk, Gabriel</au><au>Gojon, Alain</au><au>Nacry, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>172</volume><issue>2</issue><spage>1237</spage><epage>1248</epage><pages>1237-1248</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO₃⁻) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO₃⁻ through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO₃⁻. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO₃⁻ stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO₃⁻ mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>27543115</pmid><doi>10.1104/pp.16.01047</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8510-9739</orcidid><orcidid>https://orcid.org/0000-0002-6501-5823</orcidid><orcidid>https://orcid.org/0000-0003-1923-2410</orcidid><orcidid>https://orcid.org/0000-0003-3693-6735</orcidid><orcidid>https://orcid.org/0000-0001-8496-2474</orcidid><orcidid>https://orcid.org/0000-0001-7766-4989</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2016-10, Vol.172 (2), p.1237-1248 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835370382 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Anion Transport Proteins - genetics Anion Transport Proteins - metabolism Arabidopsis - genetics Arabidopsis - metabolism Gene Expression Regulation, Plant Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Luminescent Proteins - genetics Luminescent Proteins - metabolism Meristem - genetics Meristem - metabolism Microscopy, Confocal Mutation Nitrates - metabolism Organ Specificity - genetics Plant Proteins - genetics Plant Proteins - metabolism Plant Roots - genetics Plant Roots - metabolism Plants, Genetically Modified Red Fluorescent Protein Reverse Transcriptase Polymerase Chain Reaction RNA Stability - genetics SIGNALING AND RESPONSE |
title | Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20Controls%20Root%20Development%20through%20Posttranscriptional%20Regulation%20of%20the%20NRT1.1/NPF6.3%20Transporter/Sensor&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Bouguyon,%20El%C3%A9onore&rft.date=2016-10-01&rft.volume=172&rft.issue=2&rft.spage=1237&rft.epage=1248&rft.pages=1237-1248&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.16.01047&rft_dat=%3Cjstor_proqu%3E24854531%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835370382&rft_id=info:pmid/27543115&rft_jstor_id=24854531&rfr_iscdi=true |