Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor

Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO₃⁻) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2016-10, Vol.172 (2), p.1237-1248
Hauptverfasser: Bouguyon, Eléonore, Perrine-Walker, Francine, Pervent, Marjorie, Rochette, Juliette, Cuesta, Candela, Benkova, Eva, Martinière, Alexandre, Bach, Lien, Krouk, Gabriel, Gojon, Alain, Nacry, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1248
container_issue 2
container_start_page 1237
container_title Plant physiology (Bethesda)
container_volume 172
creator Bouguyon, Eléonore
Perrine-Walker, Francine
Pervent, Marjorie
Rochette, Juliette
Cuesta, Candela
Benkova, Eva
Martinière, Alexandre
Bach, Lien
Krouk, Gabriel
Gojon, Alain
Nacry, Philippe
description Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO₃⁻) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO₃⁻ through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO₃⁻. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO₃⁻ stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO₃⁻ mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue.
doi_str_mv 10.1104/pp.16.01047
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835370382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24854531</jstor_id><sourcerecordid>24854531</sourcerecordid><originalsourceid>FETCH-LOGICAL-j233t-c0c1d456f232b7a853dc5c56b956cf62aabff1cd4cf64e557387be9ba7b7a8a63</originalsourceid><addsrcrecordid>eNpF0D1PwzAQBmALgWgpTMwgjyxJ_Zm4IyoUkKpSlTJHjuO0qZLY2A4S_55ELWK699U9uuEAuMUoxhixqbUxTmLUx_QMjDGnJCKciXMwRqjPSIjZCFx5f0AIYYrZJRiRlDOKMR8Du6qCk0HDuWmDM7WHG2MCfNLfuja20W2AYe9Mt9vDtfGht61XrrKhMq2s4UbvuloOBZqylxquNlsc4-lqvUhiCreDt8YF7aYfuvXGXYOLUtZe35zmBHwunrfz12j5_vI2f1xGB0JpiBRSuGA8KQkleSoFp4Xiiif5jCeqTIiUeVliVbC-MM15SkWa61ku00HLhE7Aw_Gudear0z5kTeWVrmvZatP5DAvKaYqoID29P9Eub3SRWVc10v1kf1_qwd0RHHww7n_PBGecYvoLZpFzvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835370382</pqid></control><display><type>article</type><title>Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bouguyon, Eléonore ; Perrine-Walker, Francine ; Pervent, Marjorie ; Rochette, Juliette ; Cuesta, Candela ; Benkova, Eva ; Martinière, Alexandre ; Bach, Lien ; Krouk, Gabriel ; Gojon, Alain ; Nacry, Philippe</creator><creatorcontrib>Bouguyon, Eléonore ; Perrine-Walker, Francine ; Pervent, Marjorie ; Rochette, Juliette ; Cuesta, Candela ; Benkova, Eva ; Martinière, Alexandre ; Bach, Lien ; Krouk, Gabriel ; Gojon, Alain ; Nacry, Philippe</creatorcontrib><description>Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO₃⁻) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO₃⁻ through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO₃⁻. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO₃⁻ stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO₃⁻ mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.16.01047</identifier><identifier>PMID: 27543115</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Anion Transport Proteins - genetics ; Anion Transport Proteins - metabolism ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Gene Expression Regulation, Plant ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Meristem - genetics ; Meristem - metabolism ; Microscopy, Confocal ; Mutation ; Nitrates - metabolism ; Organ Specificity - genetics ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - genetics ; Plant Roots - metabolism ; Plants, Genetically Modified ; Red Fluorescent Protein ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Stability - genetics ; SIGNALING AND RESPONSE</subject><ispartof>Plant physiology (Bethesda), 2016-10, Vol.172 (2), p.1237-1248</ispartof><rights>Copyright © 2016 American Society of Plant Biologists</rights><rights>2016 American Society of Plant Biologists. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8510-9739 ; 0000-0002-6501-5823 ; 0000-0003-1923-2410 ; 0000-0003-3693-6735 ; 0000-0001-8496-2474 ; 0000-0001-7766-4989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24854531$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24854531$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27543115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouguyon, Eléonore</creatorcontrib><creatorcontrib>Perrine-Walker, Francine</creatorcontrib><creatorcontrib>Pervent, Marjorie</creatorcontrib><creatorcontrib>Rochette, Juliette</creatorcontrib><creatorcontrib>Cuesta, Candela</creatorcontrib><creatorcontrib>Benkova, Eva</creatorcontrib><creatorcontrib>Martinière, Alexandre</creatorcontrib><creatorcontrib>Bach, Lien</creatorcontrib><creatorcontrib>Krouk, Gabriel</creatorcontrib><creatorcontrib>Gojon, Alain</creatorcontrib><creatorcontrib>Nacry, Philippe</creatorcontrib><title>Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO₃⁻) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO₃⁻ through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO₃⁻. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO₃⁻ stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO₃⁻ mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue.</description><subject>Anion Transport Proteins - genetics</subject><subject>Anion Transport Proteins - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Meristem - genetics</subject><subject>Meristem - metabolism</subject><subject>Microscopy, Confocal</subject><subject>Mutation</subject><subject>Nitrates - metabolism</subject><subject>Organ Specificity - genetics</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Red Fluorescent Protein</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Stability - genetics</subject><subject>SIGNALING AND RESPONSE</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0D1PwzAQBmALgWgpTMwgjyxJ_Zm4IyoUkKpSlTJHjuO0qZLY2A4S_55ELWK699U9uuEAuMUoxhixqbUxTmLUx_QMjDGnJCKciXMwRqjPSIjZCFx5f0AIYYrZJRiRlDOKMR8Du6qCk0HDuWmDM7WHG2MCfNLfuja20W2AYe9Mt9vDtfGht61XrrKhMq2s4UbvuloOBZqylxquNlsc4-lqvUhiCreDt8YF7aYfuvXGXYOLUtZe35zmBHwunrfz12j5_vI2f1xGB0JpiBRSuGA8KQkleSoFp4Xiiif5jCeqTIiUeVliVbC-MM15SkWa61ku00HLhE7Aw_Gudear0z5kTeWVrmvZatP5DAvKaYqoID29P9Eub3SRWVc10v1kf1_qwd0RHHww7n_PBGecYvoLZpFzvQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Bouguyon, Eléonore</creator><creator>Perrine-Walker, Francine</creator><creator>Pervent, Marjorie</creator><creator>Rochette, Juliette</creator><creator>Cuesta, Candela</creator><creator>Benkova, Eva</creator><creator>Martinière, Alexandre</creator><creator>Bach, Lien</creator><creator>Krouk, Gabriel</creator><creator>Gojon, Alain</creator><creator>Nacry, Philippe</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8510-9739</orcidid><orcidid>https://orcid.org/0000-0002-6501-5823</orcidid><orcidid>https://orcid.org/0000-0003-1923-2410</orcidid><orcidid>https://orcid.org/0000-0003-3693-6735</orcidid><orcidid>https://orcid.org/0000-0001-8496-2474</orcidid><orcidid>https://orcid.org/0000-0001-7766-4989</orcidid></search><sort><creationdate>20161001</creationdate><title>Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor</title><author>Bouguyon, Eléonore ; Perrine-Walker, Francine ; Pervent, Marjorie ; Rochette, Juliette ; Cuesta, Candela ; Benkova, Eva ; Martinière, Alexandre ; Bach, Lien ; Krouk, Gabriel ; Gojon, Alain ; Nacry, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j233t-c0c1d456f232b7a853dc5c56b956cf62aabff1cd4cf64e557387be9ba7b7a8a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anion Transport Proteins - genetics</topic><topic>Anion Transport Proteins - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Meristem - genetics</topic><topic>Meristem - metabolism</topic><topic>Microscopy, Confocal</topic><topic>Mutation</topic><topic>Nitrates - metabolism</topic><topic>Organ Specificity - genetics</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Red Fluorescent Protein</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Stability - genetics</topic><topic>SIGNALING AND RESPONSE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouguyon, Eléonore</creatorcontrib><creatorcontrib>Perrine-Walker, Francine</creatorcontrib><creatorcontrib>Pervent, Marjorie</creatorcontrib><creatorcontrib>Rochette, Juliette</creatorcontrib><creatorcontrib>Cuesta, Candela</creatorcontrib><creatorcontrib>Benkova, Eva</creatorcontrib><creatorcontrib>Martinière, Alexandre</creatorcontrib><creatorcontrib>Bach, Lien</creatorcontrib><creatorcontrib>Krouk, Gabriel</creatorcontrib><creatorcontrib>Gojon, Alain</creatorcontrib><creatorcontrib>Nacry, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouguyon, Eléonore</au><au>Perrine-Walker, Francine</au><au>Pervent, Marjorie</au><au>Rochette, Juliette</au><au>Cuesta, Candela</au><au>Benkova, Eva</au><au>Martinière, Alexandre</au><au>Bach, Lien</au><au>Krouk, Gabriel</au><au>Gojon, Alain</au><au>Nacry, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>172</volume><issue>2</issue><spage>1237</spage><epage>1248</epage><pages>1237-1248</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO₃⁻) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO₃⁻ through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO₃⁻. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO₃⁻ stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO₃⁻ mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>27543115</pmid><doi>10.1104/pp.16.01047</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8510-9739</orcidid><orcidid>https://orcid.org/0000-0002-6501-5823</orcidid><orcidid>https://orcid.org/0000-0003-1923-2410</orcidid><orcidid>https://orcid.org/0000-0003-3693-6735</orcidid><orcidid>https://orcid.org/0000-0001-8496-2474</orcidid><orcidid>https://orcid.org/0000-0001-7766-4989</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2016-10, Vol.172 (2), p.1237-1248
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_1835370382
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Anion Transport Proteins - genetics
Anion Transport Proteins - metabolism
Arabidopsis - genetics
Arabidopsis - metabolism
Gene Expression Regulation, Plant
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Meristem - genetics
Meristem - metabolism
Microscopy, Confocal
Mutation
Nitrates - metabolism
Organ Specificity - genetics
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - genetics
Plant Roots - metabolism
Plants, Genetically Modified
Red Fluorescent Protein
Reverse Transcriptase Polymerase Chain Reaction
RNA Stability - genetics
SIGNALING AND RESPONSE
title Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20Controls%20Root%20Development%20through%20Posttranscriptional%20Regulation%20of%20the%20NRT1.1/NPF6.3%20Transporter/Sensor&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Bouguyon,%20El%C3%A9onore&rft.date=2016-10-01&rft.volume=172&rft.issue=2&rft.spage=1237&rft.epage=1248&rft.pages=1237-1248&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.16.01047&rft_dat=%3Cjstor_proqu%3E24854531%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835370382&rft_id=info:pmid/27543115&rft_jstor_id=24854531&rfr_iscdi=true