Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering
By analyzing the in-plane angular dependence of ferromagnetic resonance linewidth, we show that the Gilbert damping constant in ultrathin Fe3O4 epitaxial films on GaAs substrate can be enhanced by thickness reduction and oxygen vacancies in the interface. At the same time, the uniaxial magnetic anis...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-10, Vol.8 (40), p.27353-27359 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27359 |
---|---|
container_issue | 40 |
container_start_page | 27353 |
container_title | ACS applied materials & interfaces |
container_volume | 8 |
creator | Huang, Zhaocong Liu, Wenqing Yue, Jinjin Zhou, Qionghua Zhang, Wen Lu, Yongxiong Sui, Yunxia Zhai, Ya Chen, Qian Dong, Shuai Wang, Jinlan Xu, Yongbing Wang, Baoping |
description | By analyzing the in-plane angular dependence of ferromagnetic resonance linewidth, we show that the Gilbert damping constant in ultrathin Fe3O4 epitaxial films on GaAs substrate can be enhanced by thickness reduction and oxygen vacancies in the interface. At the same time, the uniaxial magnetic anisotropy due to the interface effect becomes significant. Using the element-specific technique of X-ray magnetic circular dichroism, we find that the orbital-to-spin moment ratio increases with decreasing film thickness, in full agreement with the increase in the Gilbert damping obtained for these ultrathin single-crystal films. Combined with the first-principle calculations, the results suggest that the bonding with Fe and Ga or As ions and the ionic distortion near the interface, as well as the FeO defects and oxygen vacancies, may increase the spin–orbit coupling in ultrathin Fe3O4 epitaxial films and in turn provide an enhanced damping. |
doi_str_mv | 10.1021/acsami.6b09478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835363770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835363770</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-7e12e26b10f0543df935ef831075c3126b89da7d3e301da097ab51db56bc8c633</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKdXzzmK0JnkJU17lFF1MNjBefESkjTdMrq0Ni3ozf_B_9C_xI4NT-_xvj94fBC6pWRGCaMP2ka997PUkJzL7AxNaM55kjHBzv93zi_RVYw7QlJgREzQexG2OlgfNrjfOvza-vD7_bPqjO_xvBna-qD4gJ8crDguWt_rT69rvN4ejr7eR2y-8CL0rqu0dbgIGx-c68bYNbqodB3dzWlO0dtTsZ6_JMvV82L-uEw0Y9An0lHmWGooqYjgUFY5CFdlQIkUFuioZHmpZQkOCC01yaU2gpZGpMZmNgWYortjb9s1H4OLvdr7aF1d6-CaISqagYAUpCSj9f5oHVmpXTN0YXxMUaIOANURoDoBhD9Q32TN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835363770</pqid></control><display><type>article</type><title>Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering</title><source>ACS Publications</source><creator>Huang, Zhaocong ; Liu, Wenqing ; Yue, Jinjin ; Zhou, Qionghua ; Zhang, Wen ; Lu, Yongxiong ; Sui, Yunxia ; Zhai, Ya ; Chen, Qian ; Dong, Shuai ; Wang, Jinlan ; Xu, Yongbing ; Wang, Baoping</creator><creatorcontrib>Huang, Zhaocong ; Liu, Wenqing ; Yue, Jinjin ; Zhou, Qionghua ; Zhang, Wen ; Lu, Yongxiong ; Sui, Yunxia ; Zhai, Ya ; Chen, Qian ; Dong, Shuai ; Wang, Jinlan ; Xu, Yongbing ; Wang, Baoping</creatorcontrib><description>By analyzing the in-plane angular dependence of ferromagnetic resonance linewidth, we show that the Gilbert damping constant in ultrathin Fe3O4 epitaxial films on GaAs substrate can be enhanced by thickness reduction and oxygen vacancies in the interface. At the same time, the uniaxial magnetic anisotropy due to the interface effect becomes significant. Using the element-specific technique of X-ray magnetic circular dichroism, we find that the orbital-to-spin moment ratio increases with decreasing film thickness, in full agreement with the increase in the Gilbert damping obtained for these ultrathin single-crystal films. Combined with the first-principle calculations, the results suggest that the bonding with Fe and Ga or As ions and the ionic distortion near the interface, as well as the FeO defects and oxygen vacancies, may increase the spin–orbit coupling in ultrathin Fe3O4 epitaxial films and in turn provide an enhanced damping.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b09478</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2016-10, Vol.8 (40), p.27353-27359</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b09478$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b09478$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Huang, Zhaocong</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Yue, Jinjin</creatorcontrib><creatorcontrib>Zhou, Qionghua</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Lu, Yongxiong</creatorcontrib><creatorcontrib>Sui, Yunxia</creatorcontrib><creatorcontrib>Zhai, Ya</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Dong, Shuai</creatorcontrib><creatorcontrib>Wang, Jinlan</creatorcontrib><creatorcontrib>Xu, Yongbing</creatorcontrib><creatorcontrib>Wang, Baoping</creatorcontrib><title>Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>By analyzing the in-plane angular dependence of ferromagnetic resonance linewidth, we show that the Gilbert damping constant in ultrathin Fe3O4 epitaxial films on GaAs substrate can be enhanced by thickness reduction and oxygen vacancies in the interface. At the same time, the uniaxial magnetic anisotropy due to the interface effect becomes significant. Using the element-specific technique of X-ray magnetic circular dichroism, we find that the orbital-to-spin moment ratio increases with decreasing film thickness, in full agreement with the increase in the Gilbert damping obtained for these ultrathin single-crystal films. Combined with the first-principle calculations, the results suggest that the bonding with Fe and Ga or As ions and the ionic distortion near the interface, as well as the FeO defects and oxygen vacancies, may increase the spin–orbit coupling in ultrathin Fe3O4 epitaxial films and in turn provide an enhanced damping.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4MoOKdXzzmK0JnkJU17lFF1MNjBefESkjTdMrq0Ni3ozf_B_9C_xI4NT-_xvj94fBC6pWRGCaMP2ka997PUkJzL7AxNaM55kjHBzv93zi_RVYw7QlJgREzQexG2OlgfNrjfOvza-vD7_bPqjO_xvBna-qD4gJ8crDguWt_rT69rvN4ejr7eR2y-8CL0rqu0dbgIGx-c68bYNbqodB3dzWlO0dtTsZ6_JMvV82L-uEw0Y9An0lHmWGooqYjgUFY5CFdlQIkUFuioZHmpZQkOCC01yaU2gpZGpMZmNgWYortjb9s1H4OLvdr7aF1d6-CaISqagYAUpCSj9f5oHVmpXTN0YXxMUaIOANURoDoBhD9Q32TN</recordid><startdate>20161012</startdate><enddate>20161012</enddate><creator>Huang, Zhaocong</creator><creator>Liu, Wenqing</creator><creator>Yue, Jinjin</creator><creator>Zhou, Qionghua</creator><creator>Zhang, Wen</creator><creator>Lu, Yongxiong</creator><creator>Sui, Yunxia</creator><creator>Zhai, Ya</creator><creator>Chen, Qian</creator><creator>Dong, Shuai</creator><creator>Wang, Jinlan</creator><creator>Xu, Yongbing</creator><creator>Wang, Baoping</creator><general>American Chemical Society</general><scope>7X8</scope></search><sort><creationdate>20161012</creationdate><title>Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering</title><author>Huang, Zhaocong ; Liu, Wenqing ; Yue, Jinjin ; Zhou, Qionghua ; Zhang, Wen ; Lu, Yongxiong ; Sui, Yunxia ; Zhai, Ya ; Chen, Qian ; Dong, Shuai ; Wang, Jinlan ; Xu, Yongbing ; Wang, Baoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-7e12e26b10f0543df935ef831075c3126b89da7d3e301da097ab51db56bc8c633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhaocong</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Yue, Jinjin</creatorcontrib><creatorcontrib>Zhou, Qionghua</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Lu, Yongxiong</creatorcontrib><creatorcontrib>Sui, Yunxia</creatorcontrib><creatorcontrib>Zhai, Ya</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Dong, Shuai</creatorcontrib><creatorcontrib>Wang, Jinlan</creatorcontrib><creatorcontrib>Xu, Yongbing</creatorcontrib><creatorcontrib>Wang, Baoping</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhaocong</au><au>Liu, Wenqing</au><au>Yue, Jinjin</au><au>Zhou, Qionghua</au><au>Zhang, Wen</au><au>Lu, Yongxiong</au><au>Sui, Yunxia</au><au>Zhai, Ya</au><au>Chen, Qian</au><au>Dong, Shuai</au><au>Wang, Jinlan</au><au>Xu, Yongbing</au><au>Wang, Baoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-10-12</date><risdate>2016</risdate><volume>8</volume><issue>40</issue><spage>27353</spage><epage>27359</epage><pages>27353-27359</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>By analyzing the in-plane angular dependence of ferromagnetic resonance linewidth, we show that the Gilbert damping constant in ultrathin Fe3O4 epitaxial films on GaAs substrate can be enhanced by thickness reduction and oxygen vacancies in the interface. At the same time, the uniaxial magnetic anisotropy due to the interface effect becomes significant. Using the element-specific technique of X-ray magnetic circular dichroism, we find that the orbital-to-spin moment ratio increases with decreasing film thickness, in full agreement with the increase in the Gilbert damping obtained for these ultrathin single-crystal films. Combined with the first-principle calculations, the results suggest that the bonding with Fe and Ga or As ions and the ionic distortion near the interface, as well as the FeO defects and oxygen vacancies, may increase the spin–orbit coupling in ultrathin Fe3O4 epitaxial films and in turn provide an enhanced damping.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.6b09478</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2016-10, Vol.8 (40), p.27353-27359 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835363770 |
source | ACS Publications |
title | Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Spin%E2%80%93Orbit%20Coupling%20in%20Fe3O4%20Epitaxial%20Thin%20Films%20by%20Interface%20Engineering&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Huang,%20Zhaocong&rft.date=2016-10-12&rft.volume=8&rft.issue=40&rft.spage=27353&rft.epage=27359&rft.pages=27353-27359&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b09478&rft_dat=%3Cproquest_acs_j%3E1835363770%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835363770&rft_id=info:pmid/&rfr_iscdi=true |