Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering

By analyzing the in-plane angular dependence of ferromagnetic resonance linewidth, we show that the Gilbert damping constant in ultrathin Fe3O4 epitaxial films on GaAs substrate can be enhanced by thickness reduction and oxygen vacancies in the interface. At the same time, the uniaxial magnetic anis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-10, Vol.8 (40), p.27353-27359
Hauptverfasser: Huang, Zhaocong, Liu, Wenqing, Yue, Jinjin, Zhou, Qionghua, Zhang, Wen, Lu, Yongxiong, Sui, Yunxia, Zhai, Ya, Chen, Qian, Dong, Shuai, Wang, Jinlan, Xu, Yongbing, Wang, Baoping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27359
container_issue 40
container_start_page 27353
container_title ACS applied materials & interfaces
container_volume 8
creator Huang, Zhaocong
Liu, Wenqing
Yue, Jinjin
Zhou, Qionghua
Zhang, Wen
Lu, Yongxiong
Sui, Yunxia
Zhai, Ya
Chen, Qian
Dong, Shuai
Wang, Jinlan
Xu, Yongbing
Wang, Baoping
description By analyzing the in-plane angular dependence of ferromagnetic resonance linewidth, we show that the Gilbert damping constant in ultrathin Fe3O4 epitaxial films on GaAs substrate can be enhanced by thickness reduction and oxygen vacancies in the interface. At the same time, the uniaxial magnetic anisotropy due to the interface effect becomes significant. Using the element-specific technique of X-ray magnetic circular dichroism, we find that the orbital-to-spin moment ratio increases with decreasing film thickness, in full agreement with the increase in the Gilbert damping obtained for these ultrathin single-crystal films. Combined with the first-principle calculations, the results suggest that the bonding with Fe and Ga or As ions and the ionic distortion near the interface, as well as the FeO defects and oxygen vacancies, may increase the spin–orbit coupling in ultrathin Fe3O4 epitaxial films and in turn provide an enhanced damping.
doi_str_mv 10.1021/acsami.6b09478
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835363770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835363770</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-7e12e26b10f0543df935ef831075c3126b89da7d3e301da097ab51db56bc8c633</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKdXzzmK0JnkJU17lFF1MNjBefESkjTdMrq0Ni3ozf_B_9C_xI4NT-_xvj94fBC6pWRGCaMP2ka997PUkJzL7AxNaM55kjHBzv93zi_RVYw7QlJgREzQexG2OlgfNrjfOvza-vD7_bPqjO_xvBna-qD4gJ8crDguWt_rT69rvN4ejr7eR2y-8CL0rqu0dbgIGx-c68bYNbqodB3dzWlO0dtTsZ6_JMvV82L-uEw0Y9An0lHmWGooqYjgUFY5CFdlQIkUFuioZHmpZQkOCC01yaU2gpZGpMZmNgWYortjb9s1H4OLvdr7aF1d6-CaISqagYAUpCSj9f5oHVmpXTN0YXxMUaIOANURoDoBhD9Q32TN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835363770</pqid></control><display><type>article</type><title>Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering</title><source>ACS Publications</source><creator>Huang, Zhaocong ; Liu, Wenqing ; Yue, Jinjin ; Zhou, Qionghua ; Zhang, Wen ; Lu, Yongxiong ; Sui, Yunxia ; Zhai, Ya ; Chen, Qian ; Dong, Shuai ; Wang, Jinlan ; Xu, Yongbing ; Wang, Baoping</creator><creatorcontrib>Huang, Zhaocong ; Liu, Wenqing ; Yue, Jinjin ; Zhou, Qionghua ; Zhang, Wen ; Lu, Yongxiong ; Sui, Yunxia ; Zhai, Ya ; Chen, Qian ; Dong, Shuai ; Wang, Jinlan ; Xu, Yongbing ; Wang, Baoping</creatorcontrib><description>By analyzing the in-plane angular dependence of ferromagnetic resonance linewidth, we show that the Gilbert damping constant in ultrathin Fe3O4 epitaxial films on GaAs substrate can be enhanced by thickness reduction and oxygen vacancies in the interface. At the same time, the uniaxial magnetic anisotropy due to the interface effect becomes significant. Using the element-specific technique of X-ray magnetic circular dichroism, we find that the orbital-to-spin moment ratio increases with decreasing film thickness, in full agreement with the increase in the Gilbert damping obtained for these ultrathin single-crystal films. Combined with the first-principle calculations, the results suggest that the bonding with Fe and Ga or As ions and the ionic distortion near the interface, as well as the FeO defects and oxygen vacancies, may increase the spin–orbit coupling in ultrathin Fe3O4 epitaxial films and in turn provide an enhanced damping.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b09478</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2016-10, Vol.8 (40), p.27353-27359</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b09478$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b09478$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Huang, Zhaocong</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Yue, Jinjin</creatorcontrib><creatorcontrib>Zhou, Qionghua</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Lu, Yongxiong</creatorcontrib><creatorcontrib>Sui, Yunxia</creatorcontrib><creatorcontrib>Zhai, Ya</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Dong, Shuai</creatorcontrib><creatorcontrib>Wang, Jinlan</creatorcontrib><creatorcontrib>Xu, Yongbing</creatorcontrib><creatorcontrib>Wang, Baoping</creatorcontrib><title>Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>By analyzing the in-plane angular dependence of ferromagnetic resonance linewidth, we show that the Gilbert damping constant in ultrathin Fe3O4 epitaxial films on GaAs substrate can be enhanced by thickness reduction and oxygen vacancies in the interface. At the same time, the uniaxial magnetic anisotropy due to the interface effect becomes significant. Using the element-specific technique of X-ray magnetic circular dichroism, we find that the orbital-to-spin moment ratio increases with decreasing film thickness, in full agreement with the increase in the Gilbert damping obtained for these ultrathin single-crystal films. Combined with the first-principle calculations, the results suggest that the bonding with Fe and Ga or As ions and the ionic distortion near the interface, as well as the FeO defects and oxygen vacancies, may increase the spin–orbit coupling in ultrathin Fe3O4 epitaxial films and in turn provide an enhanced damping.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4MoOKdXzzmK0JnkJU17lFF1MNjBefESkjTdMrq0Ni3ozf_B_9C_xI4NT-_xvj94fBC6pWRGCaMP2ka997PUkJzL7AxNaM55kjHBzv93zi_RVYw7QlJgREzQexG2OlgfNrjfOvza-vD7_bPqjO_xvBna-qD4gJ8crDguWt_rT69rvN4ejr7eR2y-8CL0rqu0dbgIGx-c68bYNbqodB3dzWlO0dtTsZ6_JMvV82L-uEw0Y9An0lHmWGooqYjgUFY5CFdlQIkUFuioZHmpZQkOCC01yaU2gpZGpMZmNgWYortjb9s1H4OLvdr7aF1d6-CaISqagYAUpCSj9f5oHVmpXTN0YXxMUaIOANURoDoBhD9Q32TN</recordid><startdate>20161012</startdate><enddate>20161012</enddate><creator>Huang, Zhaocong</creator><creator>Liu, Wenqing</creator><creator>Yue, Jinjin</creator><creator>Zhou, Qionghua</creator><creator>Zhang, Wen</creator><creator>Lu, Yongxiong</creator><creator>Sui, Yunxia</creator><creator>Zhai, Ya</creator><creator>Chen, Qian</creator><creator>Dong, Shuai</creator><creator>Wang, Jinlan</creator><creator>Xu, Yongbing</creator><creator>Wang, Baoping</creator><general>American Chemical Society</general><scope>7X8</scope></search><sort><creationdate>20161012</creationdate><title>Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering</title><author>Huang, Zhaocong ; Liu, Wenqing ; Yue, Jinjin ; Zhou, Qionghua ; Zhang, Wen ; Lu, Yongxiong ; Sui, Yunxia ; Zhai, Ya ; Chen, Qian ; Dong, Shuai ; Wang, Jinlan ; Xu, Yongbing ; Wang, Baoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-7e12e26b10f0543df935ef831075c3126b89da7d3e301da097ab51db56bc8c633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhaocong</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Yue, Jinjin</creatorcontrib><creatorcontrib>Zhou, Qionghua</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Lu, Yongxiong</creatorcontrib><creatorcontrib>Sui, Yunxia</creatorcontrib><creatorcontrib>Zhai, Ya</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Dong, Shuai</creatorcontrib><creatorcontrib>Wang, Jinlan</creatorcontrib><creatorcontrib>Xu, Yongbing</creatorcontrib><creatorcontrib>Wang, Baoping</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhaocong</au><au>Liu, Wenqing</au><au>Yue, Jinjin</au><au>Zhou, Qionghua</au><au>Zhang, Wen</au><au>Lu, Yongxiong</au><au>Sui, Yunxia</au><au>Zhai, Ya</au><au>Chen, Qian</au><au>Dong, Shuai</au><au>Wang, Jinlan</au><au>Xu, Yongbing</au><au>Wang, Baoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-10-12</date><risdate>2016</risdate><volume>8</volume><issue>40</issue><spage>27353</spage><epage>27359</epage><pages>27353-27359</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>By analyzing the in-plane angular dependence of ferromagnetic resonance linewidth, we show that the Gilbert damping constant in ultrathin Fe3O4 epitaxial films on GaAs substrate can be enhanced by thickness reduction and oxygen vacancies in the interface. At the same time, the uniaxial magnetic anisotropy due to the interface effect becomes significant. Using the element-specific technique of X-ray magnetic circular dichroism, we find that the orbital-to-spin moment ratio increases with decreasing film thickness, in full agreement with the increase in the Gilbert damping obtained for these ultrathin single-crystal films. Combined with the first-principle calculations, the results suggest that the bonding with Fe and Ga or As ions and the ionic distortion near the interface, as well as the FeO defects and oxygen vacancies, may increase the spin–orbit coupling in ultrathin Fe3O4 epitaxial films and in turn provide an enhanced damping.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.6b09478</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-10, Vol.8 (40), p.27353-27359
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1835363770
source ACS Publications
title Enhancing the Spin–Orbit Coupling in Fe3O4 Epitaxial Thin Films by Interface Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Spin%E2%80%93Orbit%20Coupling%20in%20Fe3O4%20Epitaxial%20Thin%20Films%20by%20Interface%20Engineering&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Huang,%20Zhaocong&rft.date=2016-10-12&rft.volume=8&rft.issue=40&rft.spage=27353&rft.epage=27359&rft.pages=27353-27359&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b09478&rft_dat=%3Cproquest_acs_j%3E1835363770%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835363770&rft_id=info:pmid/&rfr_iscdi=true