PKCη deficiency improves lipid metabolism and atherosclerosis in apolipoprotein E‐deficient mice

Genomewide association studies have shown that a nonsynonymous single nucleotide polymorphism in PRKCH is associated with cerebral infarction and atherosclerosis‐related complications. We examined the role of PKCη in lipid metabolism and atherosclerosis using apolipoprotein E‐deficient (Apoe−/−) mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes to cells : devoted to molecular & cellular mechanisms 2016-10, Vol.21 (10), p.1030-1048
Hauptverfasser: Torisu, Kumiko, Zhang, Xueli, Nonaka, Mari, Kaji, Takahide, Tsuchimoto, Daisuke, Kajitani, Kosuke, Sakumi, Kunihiko, Torisu, Takehiro, Chida, Kazuhiro, Sueishi, Katsuo, Kubo, Michiaki, Hata, Jun, Kitazono, Takanari, Kiyohara, Yutaka, Nakabeppu, Yusaku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1048
container_issue 10
container_start_page 1030
container_title Genes to cells : devoted to molecular & cellular mechanisms
container_volume 21
creator Torisu, Kumiko
Zhang, Xueli
Nonaka, Mari
Kaji, Takahide
Tsuchimoto, Daisuke
Kajitani, Kosuke
Sakumi, Kunihiko
Torisu, Takehiro
Chida, Kazuhiro
Sueishi, Katsuo
Kubo, Michiaki
Hata, Jun
Kitazono, Takanari
Kiyohara, Yutaka
Nakabeppu, Yusaku
description Genomewide association studies have shown that a nonsynonymous single nucleotide polymorphism in PRKCH is associated with cerebral infarction and atherosclerosis‐related complications. We examined the role of PKCη in lipid metabolism and atherosclerosis using apolipoprotein E‐deficient (Apoe−/−) mice. PKCη expression was augmented in the aortas of mice with atherosclerosis and exclusively detected in MOMA2‐positive macrophages within atherosclerotic lesions. Prkch+/+Apoe−/− and Prkch−/−Apoe−/− mice were fed a high‐fat diet (HFD), and the dyslipidemia observed in Prkch+/+Apoe−/− mice was improved in Prkch−/−Apoe−/− mice, with a particular reduction in serum LDL cholesterol and phospholipids. Liver steatosis, which developed in Prkch+/+Apoe−/− mice, was improved in Prkch−/−Apoe−/− mice, but glucose tolerance, adipose tissue and body weight, and blood pressure were unchanged. Consistent with improvements in LDL cholesterol, atherosclerotic lesions were decreased in HFD‐fed Prkch−/−Apoe−/− mice. Immunoreactivity against 3‐nitrotyrosine in atherosclerotic lesions was dramatically decreased in Prkch−/−Apoe−/− mice, accompanied by decreased necrosis and apoptosis in the lesions. ARG2 mRNA and protein levels were significantly increased in Prkch−/−Apoe−/− macrophages. These data show that PKCη deficiency improves dyslipidemia and reduces susceptibility to atherosclerosis in Apoe−/− mice, showing that PKCη plays a role in atherosclerosis development. We found that the dyslipidemia observed in Prkch+/+Apoe−/− mice was improved in Prkch−/−Apoe−/− mice. HFD‐induced liver steatosis was markedly attenuated in Prkch−/−Apoe−/− mice. Consistent with improvements of dyslipidemia, atherosclerotic lesions were decreased in HFD‐fed Prkch−/−Apoe−/− mice.
doi_str_mv 10.1111/gtc.12402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835361075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835361075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3782-bee065cc40deee43c0556fff2b1aed97bd943b7555618edb932b8df2613f102c3</originalsourceid><addsrcrecordid>eNqNkD1OwzAYhi0EoqUwcAHkEYa0_k2aEUWlICrBUGYrsb-AUf6IU1A3jsBtuAWH4CS4hLIh4eGzP_vxI_tF6JiSMfVjct_pMWWCsB00pDyUAROC727WMgxiGUcDdODcIyGUMyL30YBFUsg45EOkb6-Tj3dsILfaQqXX2JZNWz-Dw4VtrMEldGlWF9aVOK0MTrsHaGuni021DtsKp40_bmp_qwPfzj5f37a6DpdWwyHay9PCwdHPPEJ3F7NlchksbuZXyfki0DyasiADIKHUWhADAIJrImWY5znLaAomjjITC55F0u_SKZgs5iybmpyFlOeUMM1H6LT3-qc8rcB1qrROQ1GkFdQrp-iUSx5SEsl_oCyKqWCCevSsR7X_sWshV01ry7RdK0rUJn7l41ff8Xv25Ee7ykowv-Q2bw9MeuDFFrD-26Tmy6RXfgGfkZGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827914241</pqid></control><display><type>article</type><title>PKCη deficiency improves lipid metabolism and atherosclerosis in apolipoprotein E‐deficient mice</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Torisu, Kumiko ; Zhang, Xueli ; Nonaka, Mari ; Kaji, Takahide ; Tsuchimoto, Daisuke ; Kajitani, Kosuke ; Sakumi, Kunihiko ; Torisu, Takehiro ; Chida, Kazuhiro ; Sueishi, Katsuo ; Kubo, Michiaki ; Hata, Jun ; Kitazono, Takanari ; Kiyohara, Yutaka ; Nakabeppu, Yusaku</creator><creatorcontrib>Torisu, Kumiko ; Zhang, Xueli ; Nonaka, Mari ; Kaji, Takahide ; Tsuchimoto, Daisuke ; Kajitani, Kosuke ; Sakumi, Kunihiko ; Torisu, Takehiro ; Chida, Kazuhiro ; Sueishi, Katsuo ; Kubo, Michiaki ; Hata, Jun ; Kitazono, Takanari ; Kiyohara, Yutaka ; Nakabeppu, Yusaku</creatorcontrib><description>Genomewide association studies have shown that a nonsynonymous single nucleotide polymorphism in PRKCH is associated with cerebral infarction and atherosclerosis‐related complications. We examined the role of PKCη in lipid metabolism and atherosclerosis using apolipoprotein E‐deficient (Apoe−/−) mice. PKCη expression was augmented in the aortas of mice with atherosclerosis and exclusively detected in MOMA2‐positive macrophages within atherosclerotic lesions. Prkch+/+Apoe−/− and Prkch−/−Apoe−/− mice were fed a high‐fat diet (HFD), and the dyslipidemia observed in Prkch+/+Apoe−/− mice was improved in Prkch−/−Apoe−/− mice, with a particular reduction in serum LDL cholesterol and phospholipids. Liver steatosis, which developed in Prkch+/+Apoe−/− mice, was improved in Prkch−/−Apoe−/− mice, but glucose tolerance, adipose tissue and body weight, and blood pressure were unchanged. Consistent with improvements in LDL cholesterol, atherosclerotic lesions were decreased in HFD‐fed Prkch−/−Apoe−/− mice. Immunoreactivity against 3‐nitrotyrosine in atherosclerotic lesions was dramatically decreased in Prkch−/−Apoe−/− mice, accompanied by decreased necrosis and apoptosis in the lesions. ARG2 mRNA and protein levels were significantly increased in Prkch−/−Apoe−/− macrophages. These data show that PKCη deficiency improves dyslipidemia and reduces susceptibility to atherosclerosis in Apoe−/− mice, showing that PKCη plays a role in atherosclerosis development. We found that the dyslipidemia observed in Prkch+/+Apoe−/− mice was improved in Prkch−/−Apoe−/− mice. HFD‐induced liver steatosis was markedly attenuated in Prkch−/−Apoe−/− mice. Consistent with improvements of dyslipidemia, atherosclerotic lesions were decreased in HFD‐fed Prkch−/−Apoe−/− mice.</description><identifier>ISSN: 1356-9597</identifier><identifier>EISSN: 1365-2443</identifier><identifier>DOI: 10.1111/gtc.12402</identifier><identifier>PMID: 27545963</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Aorta - metabolism ; Apolipoproteins E - deficiency ; Apoptosis ; Atherosclerosis - metabolism ; Atherosclerosis - pathology ; Diet, High-Fat ; Disease Susceptibility ; Dyslipidemias - metabolism ; Fatty Liver - metabolism ; Lipid Metabolism ; Macrophages - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Obesity - metabolism ; Oxidative Stress ; Protein Kinase C - deficiency</subject><ispartof>Genes to cells : devoted to molecular &amp; cellular mechanisms, 2016-10, Vol.21 (10), p.1030-1048</ispartof><rights>2016 Molecular Biology Society of Japan and John Wiley &amp; Sons Australia, Ltd</rights><rights>2016 Molecular Biology Society of Japan and John Wiley &amp; Sons Australia, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3782-bee065cc40deee43c0556fff2b1aed97bd943b7555618edb932b8df2613f102c3</citedby><cites>FETCH-LOGICAL-c3782-bee065cc40deee43c0556fff2b1aed97bd943b7555618edb932b8df2613f102c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgtc.12402$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgtc.12402$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27545963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torisu, Kumiko</creatorcontrib><creatorcontrib>Zhang, Xueli</creatorcontrib><creatorcontrib>Nonaka, Mari</creatorcontrib><creatorcontrib>Kaji, Takahide</creatorcontrib><creatorcontrib>Tsuchimoto, Daisuke</creatorcontrib><creatorcontrib>Kajitani, Kosuke</creatorcontrib><creatorcontrib>Sakumi, Kunihiko</creatorcontrib><creatorcontrib>Torisu, Takehiro</creatorcontrib><creatorcontrib>Chida, Kazuhiro</creatorcontrib><creatorcontrib>Sueishi, Katsuo</creatorcontrib><creatorcontrib>Kubo, Michiaki</creatorcontrib><creatorcontrib>Hata, Jun</creatorcontrib><creatorcontrib>Kitazono, Takanari</creatorcontrib><creatorcontrib>Kiyohara, Yutaka</creatorcontrib><creatorcontrib>Nakabeppu, Yusaku</creatorcontrib><title>PKCη deficiency improves lipid metabolism and atherosclerosis in apolipoprotein E‐deficient mice</title><title>Genes to cells : devoted to molecular &amp; cellular mechanisms</title><addtitle>Genes Cells</addtitle><description>Genomewide association studies have shown that a nonsynonymous single nucleotide polymorphism in PRKCH is associated with cerebral infarction and atherosclerosis‐related complications. We examined the role of PKCη in lipid metabolism and atherosclerosis using apolipoprotein E‐deficient (Apoe−/−) mice. PKCη expression was augmented in the aortas of mice with atherosclerosis and exclusively detected in MOMA2‐positive macrophages within atherosclerotic lesions. Prkch+/+Apoe−/− and Prkch−/−Apoe−/− mice were fed a high‐fat diet (HFD), and the dyslipidemia observed in Prkch+/+Apoe−/− mice was improved in Prkch−/−Apoe−/− mice, with a particular reduction in serum LDL cholesterol and phospholipids. Liver steatosis, which developed in Prkch+/+Apoe−/− mice, was improved in Prkch−/−Apoe−/− mice, but glucose tolerance, adipose tissue and body weight, and blood pressure were unchanged. Consistent with improvements in LDL cholesterol, atherosclerotic lesions were decreased in HFD‐fed Prkch−/−Apoe−/− mice. Immunoreactivity against 3‐nitrotyrosine in atherosclerotic lesions was dramatically decreased in Prkch−/−Apoe−/− mice, accompanied by decreased necrosis and apoptosis in the lesions. ARG2 mRNA and protein levels were significantly increased in Prkch−/−Apoe−/− macrophages. These data show that PKCη deficiency improves dyslipidemia and reduces susceptibility to atherosclerosis in Apoe−/− mice, showing that PKCη plays a role in atherosclerosis development. We found that the dyslipidemia observed in Prkch+/+Apoe−/− mice was improved in Prkch−/−Apoe−/− mice. HFD‐induced liver steatosis was markedly attenuated in Prkch−/−Apoe−/− mice. Consistent with improvements of dyslipidemia, atherosclerotic lesions were decreased in HFD‐fed Prkch−/−Apoe−/− mice.</description><subject>Animals</subject><subject>Aorta - metabolism</subject><subject>Apolipoproteins E - deficiency</subject><subject>Apoptosis</subject><subject>Atherosclerosis - metabolism</subject><subject>Atherosclerosis - pathology</subject><subject>Diet, High-Fat</subject><subject>Disease Susceptibility</subject><subject>Dyslipidemias - metabolism</subject><subject>Fatty Liver - metabolism</subject><subject>Lipid Metabolism</subject><subject>Macrophages - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Obesity - metabolism</subject><subject>Oxidative Stress</subject><subject>Protein Kinase C - deficiency</subject><issn>1356-9597</issn><issn>1365-2443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkD1OwzAYhi0EoqUwcAHkEYa0_k2aEUWlICrBUGYrsb-AUf6IU1A3jsBtuAWH4CS4hLIh4eGzP_vxI_tF6JiSMfVjct_pMWWCsB00pDyUAROC727WMgxiGUcDdODcIyGUMyL30YBFUsg45EOkb6-Tj3dsILfaQqXX2JZNWz-Dw4VtrMEldGlWF9aVOK0MTrsHaGuni021DtsKp40_bmp_qwPfzj5f37a6DpdWwyHay9PCwdHPPEJ3F7NlchksbuZXyfki0DyasiADIKHUWhADAIJrImWY5znLaAomjjITC55F0u_SKZgs5iybmpyFlOeUMM1H6LT3-qc8rcB1qrROQ1GkFdQrp-iUSx5SEsl_oCyKqWCCevSsR7X_sWshV01ry7RdK0rUJn7l41ff8Xv25Ee7ykowv-Q2bw9MeuDFFrD-26Tmy6RXfgGfkZGU</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Torisu, Kumiko</creator><creator>Zhang, Xueli</creator><creator>Nonaka, Mari</creator><creator>Kaji, Takahide</creator><creator>Tsuchimoto, Daisuke</creator><creator>Kajitani, Kosuke</creator><creator>Sakumi, Kunihiko</creator><creator>Torisu, Takehiro</creator><creator>Chida, Kazuhiro</creator><creator>Sueishi, Katsuo</creator><creator>Kubo, Michiaki</creator><creator>Hata, Jun</creator><creator>Kitazono, Takanari</creator><creator>Kiyohara, Yutaka</creator><creator>Nakabeppu, Yusaku</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201610</creationdate><title>PKCη deficiency improves lipid metabolism and atherosclerosis in apolipoprotein E‐deficient mice</title><author>Torisu, Kumiko ; Zhang, Xueli ; Nonaka, Mari ; Kaji, Takahide ; Tsuchimoto, Daisuke ; Kajitani, Kosuke ; Sakumi, Kunihiko ; Torisu, Takehiro ; Chida, Kazuhiro ; Sueishi, Katsuo ; Kubo, Michiaki ; Hata, Jun ; Kitazono, Takanari ; Kiyohara, Yutaka ; Nakabeppu, Yusaku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3782-bee065cc40deee43c0556fff2b1aed97bd943b7555618edb932b8df2613f102c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Aorta - metabolism</topic><topic>Apolipoproteins E - deficiency</topic><topic>Apoptosis</topic><topic>Atherosclerosis - metabolism</topic><topic>Atherosclerosis - pathology</topic><topic>Diet, High-Fat</topic><topic>Disease Susceptibility</topic><topic>Dyslipidemias - metabolism</topic><topic>Fatty Liver - metabolism</topic><topic>Lipid Metabolism</topic><topic>Macrophages - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Obesity - metabolism</topic><topic>Oxidative Stress</topic><topic>Protein Kinase C - deficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torisu, Kumiko</creatorcontrib><creatorcontrib>Zhang, Xueli</creatorcontrib><creatorcontrib>Nonaka, Mari</creatorcontrib><creatorcontrib>Kaji, Takahide</creatorcontrib><creatorcontrib>Tsuchimoto, Daisuke</creatorcontrib><creatorcontrib>Kajitani, Kosuke</creatorcontrib><creatorcontrib>Sakumi, Kunihiko</creatorcontrib><creatorcontrib>Torisu, Takehiro</creatorcontrib><creatorcontrib>Chida, Kazuhiro</creatorcontrib><creatorcontrib>Sueishi, Katsuo</creatorcontrib><creatorcontrib>Kubo, Michiaki</creatorcontrib><creatorcontrib>Hata, Jun</creatorcontrib><creatorcontrib>Kitazono, Takanari</creatorcontrib><creatorcontrib>Kiyohara, Yutaka</creatorcontrib><creatorcontrib>Nakabeppu, Yusaku</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes to cells : devoted to molecular &amp; cellular mechanisms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torisu, Kumiko</au><au>Zhang, Xueli</au><au>Nonaka, Mari</au><au>Kaji, Takahide</au><au>Tsuchimoto, Daisuke</au><au>Kajitani, Kosuke</au><au>Sakumi, Kunihiko</au><au>Torisu, Takehiro</au><au>Chida, Kazuhiro</au><au>Sueishi, Katsuo</au><au>Kubo, Michiaki</au><au>Hata, Jun</au><au>Kitazono, Takanari</au><au>Kiyohara, Yutaka</au><au>Nakabeppu, Yusaku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PKCη deficiency improves lipid metabolism and atherosclerosis in apolipoprotein E‐deficient mice</atitle><jtitle>Genes to cells : devoted to molecular &amp; cellular mechanisms</jtitle><addtitle>Genes Cells</addtitle><date>2016-10</date><risdate>2016</risdate><volume>21</volume><issue>10</issue><spage>1030</spage><epage>1048</epage><pages>1030-1048</pages><issn>1356-9597</issn><eissn>1365-2443</eissn><abstract>Genomewide association studies have shown that a nonsynonymous single nucleotide polymorphism in PRKCH is associated with cerebral infarction and atherosclerosis‐related complications. We examined the role of PKCη in lipid metabolism and atherosclerosis using apolipoprotein E‐deficient (Apoe−/−) mice. PKCη expression was augmented in the aortas of mice with atherosclerosis and exclusively detected in MOMA2‐positive macrophages within atherosclerotic lesions. Prkch+/+Apoe−/− and Prkch−/−Apoe−/− mice were fed a high‐fat diet (HFD), and the dyslipidemia observed in Prkch+/+Apoe−/− mice was improved in Prkch−/−Apoe−/− mice, with a particular reduction in serum LDL cholesterol and phospholipids. Liver steatosis, which developed in Prkch+/+Apoe−/− mice, was improved in Prkch−/−Apoe−/− mice, but glucose tolerance, adipose tissue and body weight, and blood pressure were unchanged. Consistent with improvements in LDL cholesterol, atherosclerotic lesions were decreased in HFD‐fed Prkch−/−Apoe−/− mice. Immunoreactivity against 3‐nitrotyrosine in atherosclerotic lesions was dramatically decreased in Prkch−/−Apoe−/− mice, accompanied by decreased necrosis and apoptosis in the lesions. ARG2 mRNA and protein levels were significantly increased in Prkch−/−Apoe−/− macrophages. These data show that PKCη deficiency improves dyslipidemia and reduces susceptibility to atherosclerosis in Apoe−/− mice, showing that PKCη plays a role in atherosclerosis development. We found that the dyslipidemia observed in Prkch+/+Apoe−/− mice was improved in Prkch−/−Apoe−/− mice. HFD‐induced liver steatosis was markedly attenuated in Prkch−/−Apoe−/− mice. Consistent with improvements of dyslipidemia, atherosclerotic lesions were decreased in HFD‐fed Prkch−/−Apoe−/− mice.</abstract><cop>England</cop><pmid>27545963</pmid><doi>10.1111/gtc.12402</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1356-9597
ispartof Genes to cells : devoted to molecular & cellular mechanisms, 2016-10, Vol.21 (10), p.1030-1048
issn 1356-9597
1365-2443
language eng
recordid cdi_proquest_miscellaneous_1835361075
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Aorta - metabolism
Apolipoproteins E - deficiency
Apoptosis
Atherosclerosis - metabolism
Atherosclerosis - pathology
Diet, High-Fat
Disease Susceptibility
Dyslipidemias - metabolism
Fatty Liver - metabolism
Lipid Metabolism
Macrophages - metabolism
Male
Mice
Mice, Inbred C57BL
Obesity - metabolism
Oxidative Stress
Protein Kinase C - deficiency
title PKCη deficiency improves lipid metabolism and atherosclerosis in apolipoprotein E‐deficient mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PKC%CE%B7%20deficiency%20improves%20lipid%20metabolism%20and%20atherosclerosis%20in%20apolipoprotein%20E%E2%80%90deficient%20mice&rft.jtitle=Genes%20to%20cells%20:%20devoted%20to%20molecular%20&%20cellular%20mechanisms&rft.au=Torisu,%20Kumiko&rft.date=2016-10&rft.volume=21&rft.issue=10&rft.spage=1030&rft.epage=1048&rft.pages=1030-1048&rft.issn=1356-9597&rft.eissn=1365-2443&rft_id=info:doi/10.1111/gtc.12402&rft_dat=%3Cproquest_cross%3E1835361075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827914241&rft_id=info:pmid/27545963&rfr_iscdi=true