Predicting gene expression level by the transcription factor binding signals in human embryonic stem cells

•The distributions of 57 kinds of transcription factors binding signals in the genome are computed.•Transcription factors synthetic indexes (TFSIs) are defined by their association strength.•A statistics model for predicting gene expression level is established by 57 TFSIs.•The Up-regulated and Down...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioSystems 2016-12, Vol.150, p.92-98
Hauptverfasser: Zhang, Lu-Qiang, Li, Qian-Zhong, Su, Wen-Xia, Jin, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue
container_start_page 92
container_title BioSystems
container_volume 150
creator Zhang, Lu-Qiang
Li, Qian-Zhong
Su, Wen-Xia
Jin, Wen
description •The distributions of 57 kinds of transcription factors binding signals in the genome are computed.•Transcription factors synthetic indexes (TFSIs) are defined by their association strength.•A statistics model for predicting gene expression level is established by 57 TFSIs.•The Up-regulated and Down-regulated genes of 57 kinds of transcription factors are predicted.•8 TFSIs which are vital for predicting gene expression are selected out. The transcription factor (TF) binding signals play important role in the control of gene expression. In this study, to elucidate the relationship between the transcription factor binding signals and gene expression, we firstly analyze the distributions of 57 kinds of TFs’ binding signals in human H1 embryonic stem cells. Their distributions in highly and lowly expressed genes are further compared. On this basis, a statistic model of predicting gene expression level is constructed by using 57 kinds of transcription factor synthetic indexes (TFSIs). Then, the TF’s Down-regulated and Up-regulated genes are predicted and the statistics significance is estimated by one-sided Kolmogorov-Smirnov test. Based on the stepwise regression analysis, the “optimal” TFSIs are selected out, and the better results for predicting the expression level of genes with high CpG content promoters (HCPs) and low CpG content promoters (LCPs) are obtained.
doi_str_mv 10.1016/j.biosystems.2016.08.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835361028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264716300880</els_id><sourcerecordid>1835361028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d7290ada9411bc339359123353a5ea878e3e6aa8796145cb1fda81d97dc110993</originalsourceid><addsrcrecordid>eNqFkE1v3CAQhlGUqtls-xcijr3YYYw_8LGN0iZSpOSQnhGG2Q0rG28ZNur--2Jt2h7DBQTPOzM8jHEQJQhor3fl4Gc6UsKJyirflEKVAuCMrUB1VaFkVZ-zlZBCFlVbdxfskmgn8moUfGQXVde0rWjEiu2eIjpvkw9bvsWAHH_vIxL5OfARX3Hkw5GnF-QpmkA2-n1anjbGpjnywQe3JMlvgxmJ-8BfDpMJHKchHufgLV9m5BbHkT6xD5sM4ee3fc1-fr99vrkrHh5_3N98fSis7OpUuK7qhXGmrwEGK2Uvmx4qKRtpGjSqUyixNfnQt1A3doCNMwpc3zkLIPpertmXU919nH8dkJKePC0TmIDzgTSoXKsFUamMqhNq40wUcaP30U8mHjUIvZjWO_3ftF5Ma6F0Np2jV29dDsOE7l_wr9oMfDsBmP_66jFqsh6Dzboj2qTd7N_v8gecsZaF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835361028</pqid></control><display><type>article</type><title>Predicting gene expression level by the transcription factor binding signals in human embryonic stem cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Lu-Qiang ; Li, Qian-Zhong ; Su, Wen-Xia ; Jin, Wen</creator><creatorcontrib>Zhang, Lu-Qiang ; Li, Qian-Zhong ; Su, Wen-Xia ; Jin, Wen</creatorcontrib><description>•The distributions of 57 kinds of transcription factors binding signals in the genome are computed.•Transcription factors synthetic indexes (TFSIs) are defined by their association strength.•A statistics model for predicting gene expression level is established by 57 TFSIs.•The Up-regulated and Down-regulated genes of 57 kinds of transcription factors are predicted.•8 TFSIs which are vital for predicting gene expression are selected out. The transcription factor (TF) binding signals play important role in the control of gene expression. In this study, to elucidate the relationship between the transcription factor binding signals and gene expression, we firstly analyze the distributions of 57 kinds of TFs’ binding signals in human H1 embryonic stem cells. Their distributions in highly and lowly expressed genes are further compared. On this basis, a statistic model of predicting gene expression level is constructed by using 57 kinds of transcription factor synthetic indexes (TFSIs). Then, the TF’s Down-regulated and Up-regulated genes are predicted and the statistics significance is estimated by one-sided Kolmogorov-Smirnov test. Based on the stepwise regression analysis, the “optimal” TFSIs are selected out, and the better results for predicting the expression level of genes with high CpG content promoters (HCPs) and low CpG content promoters (LCPs) are obtained.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2016.08.011</identifier><identifier>PMID: 27566050</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Forecasting ; Gene Expression Regulation, Developmental ; H1 embryonic stem cells ; High CpG promoters ; Human Embryonic Stem Cells - physiology ; Humans ; Low CpG promoters ; Protein Binding - physiology ; Transcription factor synthetic index ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>BioSystems, 2016-12, Vol.150, p.92-98</ispartof><rights>2016 Elsevier Ireland Ltd</rights><rights>Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d7290ada9411bc339359123353a5ea878e3e6aa8796145cb1fda81d97dc110993</citedby><cites>FETCH-LOGICAL-c374t-d7290ada9411bc339359123353a5ea878e3e6aa8796145cb1fda81d97dc110993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0303264716300880$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27566050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Lu-Qiang</creatorcontrib><creatorcontrib>Li, Qian-Zhong</creatorcontrib><creatorcontrib>Su, Wen-Xia</creatorcontrib><creatorcontrib>Jin, Wen</creatorcontrib><title>Predicting gene expression level by the transcription factor binding signals in human embryonic stem cells</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>•The distributions of 57 kinds of transcription factors binding signals in the genome are computed.•Transcription factors synthetic indexes (TFSIs) are defined by their association strength.•A statistics model for predicting gene expression level is established by 57 TFSIs.•The Up-regulated and Down-regulated genes of 57 kinds of transcription factors are predicted.•8 TFSIs which are vital for predicting gene expression are selected out. The transcription factor (TF) binding signals play important role in the control of gene expression. In this study, to elucidate the relationship between the transcription factor binding signals and gene expression, we firstly analyze the distributions of 57 kinds of TFs’ binding signals in human H1 embryonic stem cells. Their distributions in highly and lowly expressed genes are further compared. On this basis, a statistic model of predicting gene expression level is constructed by using 57 kinds of transcription factor synthetic indexes (TFSIs). Then, the TF’s Down-regulated and Up-regulated genes are predicted and the statistics significance is estimated by one-sided Kolmogorov-Smirnov test. Based on the stepwise regression analysis, the “optimal” TFSIs are selected out, and the better results for predicting the expression level of genes with high CpG content promoters (HCPs) and low CpG content promoters (LCPs) are obtained.</description><subject>Forecasting</subject><subject>Gene Expression Regulation, Developmental</subject><subject>H1 embryonic stem cells</subject><subject>High CpG promoters</subject><subject>Human Embryonic Stem Cells - physiology</subject><subject>Humans</subject><subject>Low CpG promoters</subject><subject>Protein Binding - physiology</subject><subject>Transcription factor synthetic index</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v3CAQhlGUqtls-xcijr3YYYw_8LGN0iZSpOSQnhGG2Q0rG28ZNur--2Jt2h7DBQTPOzM8jHEQJQhor3fl4Gc6UsKJyirflEKVAuCMrUB1VaFkVZ-zlZBCFlVbdxfskmgn8moUfGQXVde0rWjEiu2eIjpvkw9bvsWAHH_vIxL5OfARX3Hkw5GnF-QpmkA2-n1anjbGpjnywQe3JMlvgxmJ-8BfDpMJHKchHufgLV9m5BbHkT6xD5sM4ee3fc1-fr99vrkrHh5_3N98fSis7OpUuK7qhXGmrwEGK2Uvmx4qKRtpGjSqUyixNfnQt1A3doCNMwpc3zkLIPpertmXU919nH8dkJKePC0TmIDzgTSoXKsFUamMqhNq40wUcaP30U8mHjUIvZjWO_3ftF5Ma6F0Np2jV29dDsOE7l_wr9oMfDsBmP_66jFqsh6Dzboj2qTd7N_v8gecsZaF</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Zhang, Lu-Qiang</creator><creator>Li, Qian-Zhong</creator><creator>Su, Wen-Xia</creator><creator>Jin, Wen</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201612</creationdate><title>Predicting gene expression level by the transcription factor binding signals in human embryonic stem cells</title><author>Zhang, Lu-Qiang ; Li, Qian-Zhong ; Su, Wen-Xia ; Jin, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d7290ada9411bc339359123353a5ea878e3e6aa8796145cb1fda81d97dc110993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Forecasting</topic><topic>Gene Expression Regulation, Developmental</topic><topic>H1 embryonic stem cells</topic><topic>High CpG promoters</topic><topic>Human Embryonic Stem Cells - physiology</topic><topic>Humans</topic><topic>Low CpG promoters</topic><topic>Protein Binding - physiology</topic><topic>Transcription factor synthetic index</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lu-Qiang</creatorcontrib><creatorcontrib>Li, Qian-Zhong</creatorcontrib><creatorcontrib>Su, Wen-Xia</creatorcontrib><creatorcontrib>Jin, Wen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lu-Qiang</au><au>Li, Qian-Zhong</au><au>Su, Wen-Xia</au><au>Jin, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting gene expression level by the transcription factor binding signals in human embryonic stem cells</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2016-12</date><risdate>2016</risdate><volume>150</volume><spage>92</spage><epage>98</epage><pages>92-98</pages><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>•The distributions of 57 kinds of transcription factors binding signals in the genome are computed.•Transcription factors synthetic indexes (TFSIs) are defined by their association strength.•A statistics model for predicting gene expression level is established by 57 TFSIs.•The Up-regulated and Down-regulated genes of 57 kinds of transcription factors are predicted.•8 TFSIs which are vital for predicting gene expression are selected out. The transcription factor (TF) binding signals play important role in the control of gene expression. In this study, to elucidate the relationship between the transcription factor binding signals and gene expression, we firstly analyze the distributions of 57 kinds of TFs’ binding signals in human H1 embryonic stem cells. Their distributions in highly and lowly expressed genes are further compared. On this basis, a statistic model of predicting gene expression level is constructed by using 57 kinds of transcription factor synthetic indexes (TFSIs). Then, the TF’s Down-regulated and Up-regulated genes are predicted and the statistics significance is estimated by one-sided Kolmogorov-Smirnov test. Based on the stepwise regression analysis, the “optimal” TFSIs are selected out, and the better results for predicting the expression level of genes with high CpG content promoters (HCPs) and low CpG content promoters (LCPs) are obtained.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>27566050</pmid><doi>10.1016/j.biosystems.2016.08.011</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-2647
ispartof BioSystems, 2016-12, Vol.150, p.92-98
issn 0303-2647
1872-8324
language eng
recordid cdi_proquest_miscellaneous_1835361028
source MEDLINE; Elsevier ScienceDirect Journals
subjects Forecasting
Gene Expression Regulation, Developmental
H1 embryonic stem cells
High CpG promoters
Human Embryonic Stem Cells - physiology
Humans
Low CpG promoters
Protein Binding - physiology
Transcription factor synthetic index
Transcription Factors - genetics
Transcription Factors - metabolism
title Predicting gene expression level by the transcription factor binding signals in human embryonic stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20gene%20expression%20level%20by%20the%20transcription%20factor%20binding%20signals%20in%20human%20embryonic%20stem%20cells&rft.jtitle=BioSystems&rft.au=Zhang,%20Lu-Qiang&rft.date=2016-12&rft.volume=150&rft.spage=92&rft.epage=98&rft.pages=92-98&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2016.08.011&rft_dat=%3Cproquest_cross%3E1835361028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835361028&rft_id=info:pmid/27566050&rft_els_id=S0303264716300880&rfr_iscdi=true