Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity

Independently controlling the shape anisotropy and chemical composition of multinary semiconductor particles is important for preparing highly efficient photocatalysts. In this study, we prepared ZnS–AgInS2 solid solution ((AgIn) x Zn2(1–x)S2, ZAIS) nanoparticles with well-controlled anisotropic sha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-10, Vol.8 (40), p.27151-27161
Hauptverfasser: Torimoto, Tsukasa, Kamiya, Yutaro, Kameyama, Tatsuya, Nishi, Hiroyasu, Uematsu, Taro, Kuwabata, Susumu, Shibayama, Tamaki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27161
container_issue 40
container_start_page 27151
container_title ACS applied materials & interfaces
container_volume 8
creator Torimoto, Tsukasa
Kamiya, Yutaro
Kameyama, Tatsuya
Nishi, Hiroyasu
Uematsu, Taro
Kuwabata, Susumu
Shibayama, Tamaki
description Independently controlling the shape anisotropy and chemical composition of multinary semiconductor particles is important for preparing highly efficient photocatalysts. In this study, we prepared ZnS–AgInS2 solid solution ((AgIn) x Zn2(1–x)S2, ZAIS) nanoparticles with well-controlled anisotropic shapes, rod and rice shapes, by reacting corresponding metal acetates with a mixture of sulfur compounds with different reactivities, elemental sulfur, and 1,3-dibutylthiourea, via a two-step heating-up process. The chemical composition predominantly determined the energy gap of ZAIS particles: the fraction of Zn2+ in rod-shaped particles was tuned by the ratio of metal precursors used in the nanocrystal formation, while postpreparative Zn2+ doping was necessary to increase the Zn2+ fraction in the rice-shaped particles. The photocatalytic H2 evolution rate with irradiation to ZAIS particles dispersed in an aqueous solution was significantly dependent on the chemical composition in the case of using photocatalyst particles with a constant morphology. In contrast, photocatalytic activity at the optimum ZAIS composition, x of 0.35–0.45, increased with particle morphology in the order of rice (size: ca. 9 × ca. 16 nm) < sphere (diameter: ca. 5.5 nm) < rod (size: 4.6 × 27 nm). The highest apparent quantum yield for photocatalytic H2 evolution was 5.9% for rod-shaped ZAIS particles, being about two times larger than that obtained with spherical particles.
doi_str_mv 10.1021/acsami.6b10408
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835352413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835352413</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-4cbca55ce9fe79cd500b51d480835b37fde35a1e667a89d1d8776f7ba9148ca43</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKtb11mKMDWZJPOzHIo_haLC6MbNcCeTaVPSZJxkCt35Dr6hT-KUipt7L-ceDocPoWtKZpTE9A6kh62eJTUlnGQnaEJzzqMsFvHp_835ObrwfkNIwmIiJsjNnQ29M0bbFS7X0ClcWO3dqHV77Fr8Ycufr-9itbBljEtndHOYQ9DO4mewroM-aGmUx63r8WLb9W53yHpdu-AkBDD78Y8LGfROh_0lOmvBeHX1t6fo_eH-bf4ULV8eF_NiGQFjLERc1hKEkCpvVZrLRhBSC9rwjGRM1CxtG8UEUJUkKWR5Q5ssTZM2rSGnPJPA2RTdHHPHPp-D8qHaai-VMWCVG3xFxxwmYk7ZaL09WkeA1cYNvR2LVZRUB6rVkWr1R5X9AioNbtc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835352413</pqid></control><display><type>article</type><title>Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity</title><source>ACS Publications</source><creator>Torimoto, Tsukasa ; Kamiya, Yutaro ; Kameyama, Tatsuya ; Nishi, Hiroyasu ; Uematsu, Taro ; Kuwabata, Susumu ; Shibayama, Tamaki</creator><creatorcontrib>Torimoto, Tsukasa ; Kamiya, Yutaro ; Kameyama, Tatsuya ; Nishi, Hiroyasu ; Uematsu, Taro ; Kuwabata, Susumu ; Shibayama, Tamaki</creatorcontrib><description>Independently controlling the shape anisotropy and chemical composition of multinary semiconductor particles is important for preparing highly efficient photocatalysts. In this study, we prepared ZnS–AgInS2 solid solution ((AgIn) x Zn2(1–x)S2, ZAIS) nanoparticles with well-controlled anisotropic shapes, rod and rice shapes, by reacting corresponding metal acetates with a mixture of sulfur compounds with different reactivities, elemental sulfur, and 1,3-dibutylthiourea, via a two-step heating-up process. The chemical composition predominantly determined the energy gap of ZAIS particles: the fraction of Zn2+ in rod-shaped particles was tuned by the ratio of metal precursors used in the nanocrystal formation, while postpreparative Zn2+ doping was necessary to increase the Zn2+ fraction in the rice-shaped particles. The photocatalytic H2 evolution rate with irradiation to ZAIS particles dispersed in an aqueous solution was significantly dependent on the chemical composition in the case of using photocatalyst particles with a constant morphology. In contrast, photocatalytic activity at the optimum ZAIS composition, x of 0.35–0.45, increased with particle morphology in the order of rice (size: ca. 9 × ca. 16 nm) &lt; sphere (diameter: ca. 5.5 nm) &lt; rod (size: 4.6 × 27 nm). The highest apparent quantum yield for photocatalytic H2 evolution was 5.9% for rod-shaped ZAIS particles, being about two times larger than that obtained with spherical particles.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b10408</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2016-10, Vol.8 (40), p.27151-27161</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b10408$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b10408$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27058,27906,27907,56720,56770</link.rule.ids></links><search><creatorcontrib>Torimoto, Tsukasa</creatorcontrib><creatorcontrib>Kamiya, Yutaro</creatorcontrib><creatorcontrib>Kameyama, Tatsuya</creatorcontrib><creatorcontrib>Nishi, Hiroyasu</creatorcontrib><creatorcontrib>Uematsu, Taro</creatorcontrib><creatorcontrib>Kuwabata, Susumu</creatorcontrib><creatorcontrib>Shibayama, Tamaki</creatorcontrib><title>Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Independently controlling the shape anisotropy and chemical composition of multinary semiconductor particles is important for preparing highly efficient photocatalysts. In this study, we prepared ZnS–AgInS2 solid solution ((AgIn) x Zn2(1–x)S2, ZAIS) nanoparticles with well-controlled anisotropic shapes, rod and rice shapes, by reacting corresponding metal acetates with a mixture of sulfur compounds with different reactivities, elemental sulfur, and 1,3-dibutylthiourea, via a two-step heating-up process. The chemical composition predominantly determined the energy gap of ZAIS particles: the fraction of Zn2+ in rod-shaped particles was tuned by the ratio of metal precursors used in the nanocrystal formation, while postpreparative Zn2+ doping was necessary to increase the Zn2+ fraction in the rice-shaped particles. The photocatalytic H2 evolution rate with irradiation to ZAIS particles dispersed in an aqueous solution was significantly dependent on the chemical composition in the case of using photocatalyst particles with a constant morphology. In contrast, photocatalytic activity at the optimum ZAIS composition, x of 0.35–0.45, increased with particle morphology in the order of rice (size: ca. 9 × ca. 16 nm) &lt; sphere (diameter: ca. 5.5 nm) &lt; rod (size: 4.6 × 27 nm). The highest apparent quantum yield for photocatalytic H2 evolution was 5.9% for rod-shaped ZAIS particles, being about two times larger than that obtained with spherical particles.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWKtb11mKMDWZJPOzHIo_haLC6MbNcCeTaVPSZJxkCt35Dr6hT-KUipt7L-ceDocPoWtKZpTE9A6kh62eJTUlnGQnaEJzzqMsFvHp_835ObrwfkNIwmIiJsjNnQ29M0bbFS7X0ClcWO3dqHV77Fr8Ycufr-9itbBljEtndHOYQ9DO4mewroM-aGmUx63r8WLb9W53yHpdu-AkBDD78Y8LGfROh_0lOmvBeHX1t6fo_eH-bf4ULV8eF_NiGQFjLERc1hKEkCpvVZrLRhBSC9rwjGRM1CxtG8UEUJUkKWR5Q5ssTZM2rSGnPJPA2RTdHHPHPp-D8qHaai-VMWCVG3xFxxwmYk7ZaL09WkeA1cYNvR2LVZRUB6rVkWr1R5X9AioNbtc</recordid><startdate>20161012</startdate><enddate>20161012</enddate><creator>Torimoto, Tsukasa</creator><creator>Kamiya, Yutaro</creator><creator>Kameyama, Tatsuya</creator><creator>Nishi, Hiroyasu</creator><creator>Uematsu, Taro</creator><creator>Kuwabata, Susumu</creator><creator>Shibayama, Tamaki</creator><general>American Chemical Society</general><scope>7X8</scope></search><sort><creationdate>20161012</creationdate><title>Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity</title><author>Torimoto, Tsukasa ; Kamiya, Yutaro ; Kameyama, Tatsuya ; Nishi, Hiroyasu ; Uematsu, Taro ; Kuwabata, Susumu ; Shibayama, Tamaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-4cbca55ce9fe79cd500b51d480835b37fde35a1e667a89d1d8776f7ba9148ca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torimoto, Tsukasa</creatorcontrib><creatorcontrib>Kamiya, Yutaro</creatorcontrib><creatorcontrib>Kameyama, Tatsuya</creatorcontrib><creatorcontrib>Nishi, Hiroyasu</creatorcontrib><creatorcontrib>Uematsu, Taro</creatorcontrib><creatorcontrib>Kuwabata, Susumu</creatorcontrib><creatorcontrib>Shibayama, Tamaki</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torimoto, Tsukasa</au><au>Kamiya, Yutaro</au><au>Kameyama, Tatsuya</au><au>Nishi, Hiroyasu</au><au>Uematsu, Taro</au><au>Kuwabata, Susumu</au><au>Shibayama, Tamaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-10-12</date><risdate>2016</risdate><volume>8</volume><issue>40</issue><spage>27151</spage><epage>27161</epage><pages>27151-27161</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Independently controlling the shape anisotropy and chemical composition of multinary semiconductor particles is important for preparing highly efficient photocatalysts. In this study, we prepared ZnS–AgInS2 solid solution ((AgIn) x Zn2(1–x)S2, ZAIS) nanoparticles with well-controlled anisotropic shapes, rod and rice shapes, by reacting corresponding metal acetates with a mixture of sulfur compounds with different reactivities, elemental sulfur, and 1,3-dibutylthiourea, via a two-step heating-up process. The chemical composition predominantly determined the energy gap of ZAIS particles: the fraction of Zn2+ in rod-shaped particles was tuned by the ratio of metal precursors used in the nanocrystal formation, while postpreparative Zn2+ doping was necessary to increase the Zn2+ fraction in the rice-shaped particles. The photocatalytic H2 evolution rate with irradiation to ZAIS particles dispersed in an aqueous solution was significantly dependent on the chemical composition in the case of using photocatalyst particles with a constant morphology. In contrast, photocatalytic activity at the optimum ZAIS composition, x of 0.35–0.45, increased with particle morphology in the order of rice (size: ca. 9 × ca. 16 nm) &lt; sphere (diameter: ca. 5.5 nm) &lt; rod (size: 4.6 × 27 nm). The highest apparent quantum yield for photocatalytic H2 evolution was 5.9% for rod-shaped ZAIS particles, being about two times larger than that obtained with spherical particles.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.6b10408</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-10, Vol.8 (40), p.27151-27161
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1835352413
source ACS Publications
title Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Shape%20Anisotropy%20of%20ZnS%E2%80%93AgInS2%20Solid%20Solution%20Nanoparticles%20for%20Improving%20Photocatalytic%20Activity&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Torimoto,%20Tsukasa&rft.date=2016-10-12&rft.volume=8&rft.issue=40&rft.spage=27151&rft.epage=27161&rft.pages=27151-27161&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b10408&rft_dat=%3Cproquest_acs_j%3E1835352413%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835352413&rft_id=info:pmid/&rfr_iscdi=true