Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity
Independently controlling the shape anisotropy and chemical composition of multinary semiconductor particles is important for preparing highly efficient photocatalysts. In this study, we prepared ZnS–AgInS2 solid solution ((AgIn) x Zn2(1–x)S2, ZAIS) nanoparticles with well-controlled anisotropic sha...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-10, Vol.8 (40), p.27151-27161 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27161 |
---|---|
container_issue | 40 |
container_start_page | 27151 |
container_title | ACS applied materials & interfaces |
container_volume | 8 |
creator | Torimoto, Tsukasa Kamiya, Yutaro Kameyama, Tatsuya Nishi, Hiroyasu Uematsu, Taro Kuwabata, Susumu Shibayama, Tamaki |
description | Independently controlling the shape anisotropy and chemical composition of multinary semiconductor particles is important for preparing highly efficient photocatalysts. In this study, we prepared ZnS–AgInS2 solid solution ((AgIn) x Zn2(1–x)S2, ZAIS) nanoparticles with well-controlled anisotropic shapes, rod and rice shapes, by reacting corresponding metal acetates with a mixture of sulfur compounds with different reactivities, elemental sulfur, and 1,3-dibutylthiourea, via a two-step heating-up process. The chemical composition predominantly determined the energy gap of ZAIS particles: the fraction of Zn2+ in rod-shaped particles was tuned by the ratio of metal precursors used in the nanocrystal formation, while postpreparative Zn2+ doping was necessary to increase the Zn2+ fraction in the rice-shaped particles. The photocatalytic H2 evolution rate with irradiation to ZAIS particles dispersed in an aqueous solution was significantly dependent on the chemical composition in the case of using photocatalyst particles with a constant morphology. In contrast, photocatalytic activity at the optimum ZAIS composition, x of 0.35–0.45, increased with particle morphology in the order of rice (size: ca. 9 × ca. 16 nm) < sphere (diameter: ca. 5.5 nm) < rod (size: 4.6 × 27 nm). The highest apparent quantum yield for photocatalytic H2 evolution was 5.9% for rod-shaped ZAIS particles, being about two times larger than that obtained with spherical particles. |
doi_str_mv | 10.1021/acsami.6b10408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835352413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835352413</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-4cbca55ce9fe79cd500b51d480835b37fde35a1e667a89d1d8776f7ba9148ca43</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKtb11mKMDWZJPOzHIo_haLC6MbNcCeTaVPSZJxkCt35Dr6hT-KUipt7L-ceDocPoWtKZpTE9A6kh62eJTUlnGQnaEJzzqMsFvHp_835ObrwfkNIwmIiJsjNnQ29M0bbFS7X0ClcWO3dqHV77Fr8Ycufr-9itbBljEtndHOYQ9DO4mewroM-aGmUx63r8WLb9W53yHpdu-AkBDD78Y8LGfROh_0lOmvBeHX1t6fo_eH-bf4ULV8eF_NiGQFjLERc1hKEkCpvVZrLRhBSC9rwjGRM1CxtG8UEUJUkKWR5Q5ssTZM2rSGnPJPA2RTdHHPHPp-D8qHaai-VMWCVG3xFxxwmYk7ZaL09WkeA1cYNvR2LVZRUB6rVkWr1R5X9AioNbtc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835352413</pqid></control><display><type>article</type><title>Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity</title><source>ACS Publications</source><creator>Torimoto, Tsukasa ; Kamiya, Yutaro ; Kameyama, Tatsuya ; Nishi, Hiroyasu ; Uematsu, Taro ; Kuwabata, Susumu ; Shibayama, Tamaki</creator><creatorcontrib>Torimoto, Tsukasa ; Kamiya, Yutaro ; Kameyama, Tatsuya ; Nishi, Hiroyasu ; Uematsu, Taro ; Kuwabata, Susumu ; Shibayama, Tamaki</creatorcontrib><description>Independently controlling the shape anisotropy and chemical composition of multinary semiconductor particles is important for preparing highly efficient photocatalysts. In this study, we prepared ZnS–AgInS2 solid solution ((AgIn) x Zn2(1–x)S2, ZAIS) nanoparticles with well-controlled anisotropic shapes, rod and rice shapes, by reacting corresponding metal acetates with a mixture of sulfur compounds with different reactivities, elemental sulfur, and 1,3-dibutylthiourea, via a two-step heating-up process. The chemical composition predominantly determined the energy gap of ZAIS particles: the fraction of Zn2+ in rod-shaped particles was tuned by the ratio of metal precursors used in the nanocrystal formation, while postpreparative Zn2+ doping was necessary to increase the Zn2+ fraction in the rice-shaped particles. The photocatalytic H2 evolution rate with irradiation to ZAIS particles dispersed in an aqueous solution was significantly dependent on the chemical composition in the case of using photocatalyst particles with a constant morphology. In contrast, photocatalytic activity at the optimum ZAIS composition, x of 0.35–0.45, increased with particle morphology in the order of rice (size: ca. 9 × ca. 16 nm) < sphere (diameter: ca. 5.5 nm) < rod (size: 4.6 × 27 nm). The highest apparent quantum yield for photocatalytic H2 evolution was 5.9% for rod-shaped ZAIS particles, being about two times larger than that obtained with spherical particles.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b10408</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2016-10, Vol.8 (40), p.27151-27161</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b10408$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b10408$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27058,27906,27907,56720,56770</link.rule.ids></links><search><creatorcontrib>Torimoto, Tsukasa</creatorcontrib><creatorcontrib>Kamiya, Yutaro</creatorcontrib><creatorcontrib>Kameyama, Tatsuya</creatorcontrib><creatorcontrib>Nishi, Hiroyasu</creatorcontrib><creatorcontrib>Uematsu, Taro</creatorcontrib><creatorcontrib>Kuwabata, Susumu</creatorcontrib><creatorcontrib>Shibayama, Tamaki</creatorcontrib><title>Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Independently controlling the shape anisotropy and chemical composition of multinary semiconductor particles is important for preparing highly efficient photocatalysts. In this study, we prepared ZnS–AgInS2 solid solution ((AgIn) x Zn2(1–x)S2, ZAIS) nanoparticles with well-controlled anisotropic shapes, rod and rice shapes, by reacting corresponding metal acetates with a mixture of sulfur compounds with different reactivities, elemental sulfur, and 1,3-dibutylthiourea, via a two-step heating-up process. The chemical composition predominantly determined the energy gap of ZAIS particles: the fraction of Zn2+ in rod-shaped particles was tuned by the ratio of metal precursors used in the nanocrystal formation, while postpreparative Zn2+ doping was necessary to increase the Zn2+ fraction in the rice-shaped particles. The photocatalytic H2 evolution rate with irradiation to ZAIS particles dispersed in an aqueous solution was significantly dependent on the chemical composition in the case of using photocatalyst particles with a constant morphology. In contrast, photocatalytic activity at the optimum ZAIS composition, x of 0.35–0.45, increased with particle morphology in the order of rice (size: ca. 9 × ca. 16 nm) < sphere (diameter: ca. 5.5 nm) < rod (size: 4.6 × 27 nm). The highest apparent quantum yield for photocatalytic H2 evolution was 5.9% for rod-shaped ZAIS particles, being about two times larger than that obtained with spherical particles.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWKtb11mKMDWZJPOzHIo_haLC6MbNcCeTaVPSZJxkCt35Dr6hT-KUipt7L-ceDocPoWtKZpTE9A6kh62eJTUlnGQnaEJzzqMsFvHp_835ObrwfkNIwmIiJsjNnQ29M0bbFS7X0ClcWO3dqHV77Fr8Ycufr-9itbBljEtndHOYQ9DO4mewroM-aGmUx63r8WLb9W53yHpdu-AkBDD78Y8LGfROh_0lOmvBeHX1t6fo_eH-bf4ULV8eF_NiGQFjLERc1hKEkCpvVZrLRhBSC9rwjGRM1CxtG8UEUJUkKWR5Q5ssTZM2rSGnPJPA2RTdHHPHPp-D8qHaai-VMWCVG3xFxxwmYk7ZaL09WkeA1cYNvR2LVZRUB6rVkWr1R5X9AioNbtc</recordid><startdate>20161012</startdate><enddate>20161012</enddate><creator>Torimoto, Tsukasa</creator><creator>Kamiya, Yutaro</creator><creator>Kameyama, Tatsuya</creator><creator>Nishi, Hiroyasu</creator><creator>Uematsu, Taro</creator><creator>Kuwabata, Susumu</creator><creator>Shibayama, Tamaki</creator><general>American Chemical Society</general><scope>7X8</scope></search><sort><creationdate>20161012</creationdate><title>Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity</title><author>Torimoto, Tsukasa ; Kamiya, Yutaro ; Kameyama, Tatsuya ; Nishi, Hiroyasu ; Uematsu, Taro ; Kuwabata, Susumu ; Shibayama, Tamaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-4cbca55ce9fe79cd500b51d480835b37fde35a1e667a89d1d8776f7ba9148ca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torimoto, Tsukasa</creatorcontrib><creatorcontrib>Kamiya, Yutaro</creatorcontrib><creatorcontrib>Kameyama, Tatsuya</creatorcontrib><creatorcontrib>Nishi, Hiroyasu</creatorcontrib><creatorcontrib>Uematsu, Taro</creatorcontrib><creatorcontrib>Kuwabata, Susumu</creatorcontrib><creatorcontrib>Shibayama, Tamaki</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torimoto, Tsukasa</au><au>Kamiya, Yutaro</au><au>Kameyama, Tatsuya</au><au>Nishi, Hiroyasu</au><au>Uematsu, Taro</au><au>Kuwabata, Susumu</au><au>Shibayama, Tamaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-10-12</date><risdate>2016</risdate><volume>8</volume><issue>40</issue><spage>27151</spage><epage>27161</epage><pages>27151-27161</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Independently controlling the shape anisotropy and chemical composition of multinary semiconductor particles is important for preparing highly efficient photocatalysts. In this study, we prepared ZnS–AgInS2 solid solution ((AgIn) x Zn2(1–x)S2, ZAIS) nanoparticles with well-controlled anisotropic shapes, rod and rice shapes, by reacting corresponding metal acetates with a mixture of sulfur compounds with different reactivities, elemental sulfur, and 1,3-dibutylthiourea, via a two-step heating-up process. The chemical composition predominantly determined the energy gap of ZAIS particles: the fraction of Zn2+ in rod-shaped particles was tuned by the ratio of metal precursors used in the nanocrystal formation, while postpreparative Zn2+ doping was necessary to increase the Zn2+ fraction in the rice-shaped particles. The photocatalytic H2 evolution rate with irradiation to ZAIS particles dispersed in an aqueous solution was significantly dependent on the chemical composition in the case of using photocatalyst particles with a constant morphology. In contrast, photocatalytic activity at the optimum ZAIS composition, x of 0.35–0.45, increased with particle morphology in the order of rice (size: ca. 9 × ca. 16 nm) < sphere (diameter: ca. 5.5 nm) < rod (size: 4.6 × 27 nm). The highest apparent quantum yield for photocatalytic H2 evolution was 5.9% for rod-shaped ZAIS particles, being about two times larger than that obtained with spherical particles.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.6b10408</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2016-10, Vol.8 (40), p.27151-27161 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835352413 |
source | ACS Publications |
title | Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Shape%20Anisotropy%20of%20ZnS%E2%80%93AgInS2%20Solid%20Solution%20Nanoparticles%20for%20Improving%20Photocatalytic%20Activity&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Torimoto,%20Tsukasa&rft.date=2016-10-12&rft.volume=8&rft.issue=40&rft.spage=27151&rft.epage=27161&rft.pages=27151-27161&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b10408&rft_dat=%3Cproquest_acs_j%3E1835352413%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835352413&rft_id=info:pmid/&rfr_iscdi=true |