Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity
Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of...
Gespeichert in:
Veröffentlicht in: | Molecular cancer therapeutics 2017-01, Vol.16 (1), p.182-192 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 1 |
container_start_page | 182 |
container_title | Molecular cancer therapeutics |
container_volume | 16 |
creator | Kamel, Walied A Sugihara, Eiji Nobusue, Hiroyuki Yamaguchi-Iwai, Sayaka Onishi, Nobuyuki Maki, Kenta Fukuchi, Yumi Matsuo, Koichi Muto, Akihiro Saya, Hideyuki Shimizu, Takatsune |
description | Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of osteosarcoma cells in vitro Simvastatin also induced apoptosis in osteosarcoma cells in a manner dependent on inhibition of the mevalonate biosynthetic pathway. It also disrupted the function of the small GTPase RhoA and induced activation of AMP-activated protein kinase (AMPK) and p38 MAPK, with AMPK functioning upstream of p38 MAPK. Inhibitors of AMPK or p38 MAPK attenuated the induction of apoptosis by simvastatin, whereas metformin enhanced this effect of simvastatin by further activation of AMPK. Although treatment with simvastatin alone did not inhibit osteosarcoma tumor growth in vivo, its combination with a fat-free diet induced a significant antitumor effect that was enhanced further by metformin administration. Our findings suggest that simvastatin induces apoptosis in osteosarcoma cells via activation of AMPK and p38 MAPK, and that, in combination with other approaches, it holds therapeutic potential for osteosarcoma. Mol Cancer Ther; 16(1); 182-92. ©2016 AACR. |
doi_str_mv | 10.1158/1535-7163.mct-16-0499 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835002763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983851808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-e7f5e7cb54da06e569a879445ece550007b915571f4ae631b55e150c6aaeb7423</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0EoqXwE0CW2LBxa8e5frCLRjyq6ahVW9aW43GKqyQOsVNp_j0OU1iwuldX3znSPQeh94yeMwbqggEHIpng54PLhAlCa61foNNyV0QBq1_-2Y_MCXqT0iOlTOmKvUYnlZRacxCnaLkLw5NN2eYwkstxvzi_x80UpxxTSDiM-DplH5OdXRws3vi-T59xg7f-gG9j73Hs8O3P2JBmd7O9mLjCu-Zmi-_Cw2j7MD6sDs2YQ16GOOPG5fAU8uEtetXZPvl3z_MM_fj65X7znVxdf7vcNFfEAa0y8bIDL10L9d5S4UFoq6Sua_DOA1BKZasZgGRdbb3grAXwDKgT1vpW1hU_Q5-OvtMcfy0-ZTOE5MoPdvRxSYYpXmwqKXhBP_6HPsZlLk8USiteElVUFQqOlJtjSrPvzDSHwc4Hw6hZezFr5mbN3Ow294YJs_ZSdB-e3Zd28Pt_qr9F8N_8ZIec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983851808</pqid></control><display><type>article</type><title>Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kamel, Walied A ; Sugihara, Eiji ; Nobusue, Hiroyuki ; Yamaguchi-Iwai, Sayaka ; Onishi, Nobuyuki ; Maki, Kenta ; Fukuchi, Yumi ; Matsuo, Koichi ; Muto, Akihiro ; Saya, Hideyuki ; Shimizu, Takatsune</creator><creatorcontrib>Kamel, Walied A ; Sugihara, Eiji ; Nobusue, Hiroyuki ; Yamaguchi-Iwai, Sayaka ; Onishi, Nobuyuki ; Maki, Kenta ; Fukuchi, Yumi ; Matsuo, Koichi ; Muto, Akihiro ; Saya, Hideyuki ; Shimizu, Takatsune</creatorcontrib><description>Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of osteosarcoma cells in vitro Simvastatin also induced apoptosis in osteosarcoma cells in a manner dependent on inhibition of the mevalonate biosynthetic pathway. It also disrupted the function of the small GTPase RhoA and induced activation of AMP-activated protein kinase (AMPK) and p38 MAPK, with AMPK functioning upstream of p38 MAPK. Inhibitors of AMPK or p38 MAPK attenuated the induction of apoptosis by simvastatin, whereas metformin enhanced this effect of simvastatin by further activation of AMPK. Although treatment with simvastatin alone did not inhibit osteosarcoma tumor growth in vivo, its combination with a fat-free diet induced a significant antitumor effect that was enhanced further by metformin administration. Our findings suggest that simvastatin induces apoptosis in osteosarcoma cells via activation of AMPK and p38 MAPK, and that, in combination with other approaches, it holds therapeutic potential for osteosarcoma. Mol Cancer Ther; 16(1); 182-92. ©2016 AACR.</description><identifier>ISSN: 1535-7163</identifier><identifier>EISSN: 1538-8514</identifier><identifier>DOI: 10.1158/1535-7163.mct-16-0499</identifier><identifier>PMID: 27799356</identifier><language>eng</language><publisher>United States: American Association for Cancer Research Inc</publisher><subject>Activation ; AMP ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - metabolism ; Animals ; Anticancer properties ; Antitumor activity ; Apoptosis ; Apoptosis - drug effects ; Biocompatibility ; Biomedical materials ; Bone cancer ; Bone Neoplasms - genetics ; Bone Neoplasms - metabolism ; Bone tumors ; Cancer ; Cell Line, Tumor ; Cell migration ; Cell Movement - drug effects ; Cell proliferation ; Cell Proliferation - drug effects ; Chemical compounds ; Disease Models, Animal ; Drugs ; Fat-free ; Gene Expression Regulation, Neoplastic ; Guanosine triphosphatases ; Humans ; Kinases ; MAP kinase ; Metformin ; Metformin - pharmacology ; Mevalonic acid ; Mice ; Osteosarcoma ; Osteosarcoma - genetics ; Osteosarcoma - metabolism ; Osteosarcoma cells ; p38 Mitogen-Activated Protein Kinases - metabolism ; Pharmacology ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism ; RhoA protein ; Signal Transduction - drug effects ; Signaling ; Simvastatin ; Simvastatin - pharmacology ; Xenograft Model Antitumor Assays</subject><ispartof>Molecular cancer therapeutics, 2017-01, Vol.16 (1), p.182-192</ispartof><rights>2016 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research Inc Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-e7f5e7cb54da06e569a879445ece550007b915571f4ae631b55e150c6aaeb7423</citedby><cites>FETCH-LOGICAL-c502t-e7f5e7cb54da06e569a879445ece550007b915571f4ae631b55e150c6aaeb7423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3357,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27799356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamel, Walied A</creatorcontrib><creatorcontrib>Sugihara, Eiji</creatorcontrib><creatorcontrib>Nobusue, Hiroyuki</creatorcontrib><creatorcontrib>Yamaguchi-Iwai, Sayaka</creatorcontrib><creatorcontrib>Onishi, Nobuyuki</creatorcontrib><creatorcontrib>Maki, Kenta</creatorcontrib><creatorcontrib>Fukuchi, Yumi</creatorcontrib><creatorcontrib>Matsuo, Koichi</creatorcontrib><creatorcontrib>Muto, Akihiro</creatorcontrib><creatorcontrib>Saya, Hideyuki</creatorcontrib><creatorcontrib>Shimizu, Takatsune</creatorcontrib><title>Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity</title><title>Molecular cancer therapeutics</title><addtitle>Mol Cancer Ther</addtitle><description>Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of osteosarcoma cells in vitro Simvastatin also induced apoptosis in osteosarcoma cells in a manner dependent on inhibition of the mevalonate biosynthetic pathway. It also disrupted the function of the small GTPase RhoA and induced activation of AMP-activated protein kinase (AMPK) and p38 MAPK, with AMPK functioning upstream of p38 MAPK. Inhibitors of AMPK or p38 MAPK attenuated the induction of apoptosis by simvastatin, whereas metformin enhanced this effect of simvastatin by further activation of AMPK. Although treatment with simvastatin alone did not inhibit osteosarcoma tumor growth in vivo, its combination with a fat-free diet induced a significant antitumor effect that was enhanced further by metformin administration. Our findings suggest that simvastatin induces apoptosis in osteosarcoma cells via activation of AMPK and p38 MAPK, and that, in combination with other approaches, it holds therapeutic potential for osteosarcoma. Mol Cancer Ther; 16(1); 182-92. ©2016 AACR.</description><subject>Activation</subject><subject>AMP</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone cancer</subject><subject>Bone Neoplasms - genetics</subject><subject>Bone Neoplasms - metabolism</subject><subject>Bone tumors</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement - drug effects</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemical compounds</subject><subject>Disease Models, Animal</subject><subject>Drugs</subject><subject>Fat-free</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Guanosine triphosphatases</subject><subject>Humans</subject><subject>Kinases</subject><subject>MAP kinase</subject><subject>Metformin</subject><subject>Metformin - pharmacology</subject><subject>Mevalonic acid</subject><subject>Mice</subject><subject>Osteosarcoma</subject><subject>Osteosarcoma - genetics</subject><subject>Osteosarcoma - metabolism</subject><subject>Osteosarcoma cells</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Pharmacology</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RhoA protein</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Simvastatin</subject><subject>Simvastatin - pharmacology</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1535-7163</issn><issn>1538-8514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAUhS0EoqXwE0CW2LBxa8e5frCLRjyq6ahVW9aW43GKqyQOsVNp_j0OU1iwuldX3znSPQeh94yeMwbqggEHIpng54PLhAlCa61foNNyV0QBq1_-2Y_MCXqT0iOlTOmKvUYnlZRacxCnaLkLw5NN2eYwkstxvzi_x80UpxxTSDiM-DplH5OdXRws3vi-T59xg7f-gG9j73Hs8O3P2JBmd7O9mLjCu-Zmi-_Cw2j7MD6sDs2YQ16GOOPG5fAU8uEtetXZPvl3z_MM_fj65X7znVxdf7vcNFfEAa0y8bIDL10L9d5S4UFoq6Sua_DOA1BKZasZgGRdbb3grAXwDKgT1vpW1hU_Q5-OvtMcfy0-ZTOE5MoPdvRxSYYpXmwqKXhBP_6HPsZlLk8USiteElVUFQqOlJtjSrPvzDSHwc4Hw6hZezFr5mbN3Ow294YJs_ZSdB-e3Zd28Pt_qr9F8N_8ZIec</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Kamel, Walied A</creator><creator>Sugihara, Eiji</creator><creator>Nobusue, Hiroyuki</creator><creator>Yamaguchi-Iwai, Sayaka</creator><creator>Onishi, Nobuyuki</creator><creator>Maki, Kenta</creator><creator>Fukuchi, Yumi</creator><creator>Matsuo, Koichi</creator><creator>Muto, Akihiro</creator><creator>Saya, Hideyuki</creator><creator>Shimizu, Takatsune</creator><general>American Association for Cancer Research Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity</title><author>Kamel, Walied A ; Sugihara, Eiji ; Nobusue, Hiroyuki ; Yamaguchi-Iwai, Sayaka ; Onishi, Nobuyuki ; Maki, Kenta ; Fukuchi, Yumi ; Matsuo, Koichi ; Muto, Akihiro ; Saya, Hideyuki ; Shimizu, Takatsune</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-e7f5e7cb54da06e569a879445ece550007b915571f4ae631b55e150c6aaeb7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>AMP</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone cancer</topic><topic>Bone Neoplasms - genetics</topic><topic>Bone Neoplasms - metabolism</topic><topic>Bone tumors</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement - drug effects</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemical compounds</topic><topic>Disease Models, Animal</topic><topic>Drugs</topic><topic>Fat-free</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Guanosine triphosphatases</topic><topic>Humans</topic><topic>Kinases</topic><topic>MAP kinase</topic><topic>Metformin</topic><topic>Metformin - pharmacology</topic><topic>Mevalonic acid</topic><topic>Mice</topic><topic>Osteosarcoma</topic><topic>Osteosarcoma - genetics</topic><topic>Osteosarcoma - metabolism</topic><topic>Osteosarcoma cells</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Pharmacology</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RhoA protein</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Simvastatin</topic><topic>Simvastatin - pharmacology</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamel, Walied A</creatorcontrib><creatorcontrib>Sugihara, Eiji</creatorcontrib><creatorcontrib>Nobusue, Hiroyuki</creatorcontrib><creatorcontrib>Yamaguchi-Iwai, Sayaka</creatorcontrib><creatorcontrib>Onishi, Nobuyuki</creatorcontrib><creatorcontrib>Maki, Kenta</creatorcontrib><creatorcontrib>Fukuchi, Yumi</creatorcontrib><creatorcontrib>Matsuo, Koichi</creatorcontrib><creatorcontrib>Muto, Akihiro</creatorcontrib><creatorcontrib>Saya, Hideyuki</creatorcontrib><creatorcontrib>Shimizu, Takatsune</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cancer therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamel, Walied A</au><au>Sugihara, Eiji</au><au>Nobusue, Hiroyuki</au><au>Yamaguchi-Iwai, Sayaka</au><au>Onishi, Nobuyuki</au><au>Maki, Kenta</au><au>Fukuchi, Yumi</au><au>Matsuo, Koichi</au><au>Muto, Akihiro</au><au>Saya, Hideyuki</au><au>Shimizu, Takatsune</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity</atitle><jtitle>Molecular cancer therapeutics</jtitle><addtitle>Mol Cancer Ther</addtitle><date>2017-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>182</spage><epage>192</epage><pages>182-192</pages><issn>1535-7163</issn><eissn>1538-8514</eissn><abstract>Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of osteosarcoma cells in vitro Simvastatin also induced apoptosis in osteosarcoma cells in a manner dependent on inhibition of the mevalonate biosynthetic pathway. It also disrupted the function of the small GTPase RhoA and induced activation of AMP-activated protein kinase (AMPK) and p38 MAPK, with AMPK functioning upstream of p38 MAPK. Inhibitors of AMPK or p38 MAPK attenuated the induction of apoptosis by simvastatin, whereas metformin enhanced this effect of simvastatin by further activation of AMPK. Although treatment with simvastatin alone did not inhibit osteosarcoma tumor growth in vivo, its combination with a fat-free diet induced a significant antitumor effect that was enhanced further by metformin administration. Our findings suggest that simvastatin induces apoptosis in osteosarcoma cells via activation of AMPK and p38 MAPK, and that, in combination with other approaches, it holds therapeutic potential for osteosarcoma. Mol Cancer Ther; 16(1); 182-92. ©2016 AACR.</abstract><cop>United States</cop><pub>American Association for Cancer Research Inc</pub><pmid>27799356</pmid><doi>10.1158/1535-7163.mct-16-0499</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-7163 |
ispartof | Molecular cancer therapeutics, 2017-01, Vol.16 (1), p.182-192 |
issn | 1535-7163 1538-8514 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835002763 |
source | MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals |
subjects | Activation AMP AMP-activated protein kinase AMP-Activated Protein Kinases - metabolism Animals Anticancer properties Antitumor activity Apoptosis Apoptosis - drug effects Biocompatibility Biomedical materials Bone cancer Bone Neoplasms - genetics Bone Neoplasms - metabolism Bone tumors Cancer Cell Line, Tumor Cell migration Cell Movement - drug effects Cell proliferation Cell Proliferation - drug effects Chemical compounds Disease Models, Animal Drugs Fat-free Gene Expression Regulation, Neoplastic Guanosine triphosphatases Humans Kinases MAP kinase Metformin Metformin - pharmacology Mevalonic acid Mice Osteosarcoma Osteosarcoma - genetics Osteosarcoma - metabolism Osteosarcoma cells p38 Mitogen-Activated Protein Kinases - metabolism Pharmacology rhoA GTP-Binding Protein - genetics rhoA GTP-Binding Protein - metabolism RhoA protein Signal Transduction - drug effects Signaling Simvastatin Simvastatin - pharmacology Xenograft Model Antitumor Assays |
title | Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simvastatin-Induced%20Apoptosis%20in%20Osteosarcoma%20Cells:%20A%20Key%20Role%20of%20RhoA-AMPK/p38%20MAPK%20Signaling%20in%20Antitumor%20Activity&rft.jtitle=Molecular%20cancer%20therapeutics&rft.au=Kamel,%20Walied%20A&rft.date=2017-01&rft.volume=16&rft.issue=1&rft.spage=182&rft.epage=192&rft.pages=182-192&rft.issn=1535-7163&rft.eissn=1538-8514&rft_id=info:doi/10.1158/1535-7163.mct-16-0499&rft_dat=%3Cproquest_cross%3E1983851808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983851808&rft_id=info:pmid/27799356&rfr_iscdi=true |