Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity

Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer therapeutics 2017-01, Vol.16 (1), p.182-192
Hauptverfasser: Kamel, Walied A, Sugihara, Eiji, Nobusue, Hiroyuki, Yamaguchi-Iwai, Sayaka, Onishi, Nobuyuki, Maki, Kenta, Fukuchi, Yumi, Matsuo, Koichi, Muto, Akihiro, Saya, Hideyuki, Shimizu, Takatsune
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 1
container_start_page 182
container_title Molecular cancer therapeutics
container_volume 16
creator Kamel, Walied A
Sugihara, Eiji
Nobusue, Hiroyuki
Yamaguchi-Iwai, Sayaka
Onishi, Nobuyuki
Maki, Kenta
Fukuchi, Yumi
Matsuo, Koichi
Muto, Akihiro
Saya, Hideyuki
Shimizu, Takatsune
description Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of osteosarcoma cells in vitro Simvastatin also induced apoptosis in osteosarcoma cells in a manner dependent on inhibition of the mevalonate biosynthetic pathway. It also disrupted the function of the small GTPase RhoA and induced activation of AMP-activated protein kinase (AMPK) and p38 MAPK, with AMPK functioning upstream of p38 MAPK. Inhibitors of AMPK or p38 MAPK attenuated the induction of apoptosis by simvastatin, whereas metformin enhanced this effect of simvastatin by further activation of AMPK. Although treatment with simvastatin alone did not inhibit osteosarcoma tumor growth in vivo, its combination with a fat-free diet induced a significant antitumor effect that was enhanced further by metformin administration. Our findings suggest that simvastatin induces apoptosis in osteosarcoma cells via activation of AMPK and p38 MAPK, and that, in combination with other approaches, it holds therapeutic potential for osteosarcoma. Mol Cancer Ther; 16(1); 182-92. ©2016 AACR.
doi_str_mv 10.1158/1535-7163.mct-16-0499
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835002763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983851808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-e7f5e7cb54da06e569a879445ece550007b915571f4ae631b55e150c6aaeb7423</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0EoqXwE0CW2LBxa8e5frCLRjyq6ahVW9aW43GKqyQOsVNp_j0OU1iwuldX3znSPQeh94yeMwbqggEHIpng54PLhAlCa61foNNyV0QBq1_-2Y_MCXqT0iOlTOmKvUYnlZRacxCnaLkLw5NN2eYwkstxvzi_x80UpxxTSDiM-DplH5OdXRws3vi-T59xg7f-gG9j73Hs8O3P2JBmd7O9mLjCu-Zmi-_Cw2j7MD6sDs2YQ16GOOPG5fAU8uEtetXZPvl3z_MM_fj65X7znVxdf7vcNFfEAa0y8bIDL10L9d5S4UFoq6Sua_DOA1BKZasZgGRdbb3grAXwDKgT1vpW1hU_Q5-OvtMcfy0-ZTOE5MoPdvRxSYYpXmwqKXhBP_6HPsZlLk8USiteElVUFQqOlJtjSrPvzDSHwc4Hw6hZezFr5mbN3Ow294YJs_ZSdB-e3Zd28Pt_qr9F8N_8ZIec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983851808</pqid></control><display><type>article</type><title>Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kamel, Walied A ; Sugihara, Eiji ; Nobusue, Hiroyuki ; Yamaguchi-Iwai, Sayaka ; Onishi, Nobuyuki ; Maki, Kenta ; Fukuchi, Yumi ; Matsuo, Koichi ; Muto, Akihiro ; Saya, Hideyuki ; Shimizu, Takatsune</creator><creatorcontrib>Kamel, Walied A ; Sugihara, Eiji ; Nobusue, Hiroyuki ; Yamaguchi-Iwai, Sayaka ; Onishi, Nobuyuki ; Maki, Kenta ; Fukuchi, Yumi ; Matsuo, Koichi ; Muto, Akihiro ; Saya, Hideyuki ; Shimizu, Takatsune</creatorcontrib><description>Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of osteosarcoma cells in vitro Simvastatin also induced apoptosis in osteosarcoma cells in a manner dependent on inhibition of the mevalonate biosynthetic pathway. It also disrupted the function of the small GTPase RhoA and induced activation of AMP-activated protein kinase (AMPK) and p38 MAPK, with AMPK functioning upstream of p38 MAPK. Inhibitors of AMPK or p38 MAPK attenuated the induction of apoptosis by simvastatin, whereas metformin enhanced this effect of simvastatin by further activation of AMPK. Although treatment with simvastatin alone did not inhibit osteosarcoma tumor growth in vivo, its combination with a fat-free diet induced a significant antitumor effect that was enhanced further by metformin administration. Our findings suggest that simvastatin induces apoptosis in osteosarcoma cells via activation of AMPK and p38 MAPK, and that, in combination with other approaches, it holds therapeutic potential for osteosarcoma. Mol Cancer Ther; 16(1); 182-92. ©2016 AACR.</description><identifier>ISSN: 1535-7163</identifier><identifier>EISSN: 1538-8514</identifier><identifier>DOI: 10.1158/1535-7163.mct-16-0499</identifier><identifier>PMID: 27799356</identifier><language>eng</language><publisher>United States: American Association for Cancer Research Inc</publisher><subject>Activation ; AMP ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - metabolism ; Animals ; Anticancer properties ; Antitumor activity ; Apoptosis ; Apoptosis - drug effects ; Biocompatibility ; Biomedical materials ; Bone cancer ; Bone Neoplasms - genetics ; Bone Neoplasms - metabolism ; Bone tumors ; Cancer ; Cell Line, Tumor ; Cell migration ; Cell Movement - drug effects ; Cell proliferation ; Cell Proliferation - drug effects ; Chemical compounds ; Disease Models, Animal ; Drugs ; Fat-free ; Gene Expression Regulation, Neoplastic ; Guanosine triphosphatases ; Humans ; Kinases ; MAP kinase ; Metformin ; Metformin - pharmacology ; Mevalonic acid ; Mice ; Osteosarcoma ; Osteosarcoma - genetics ; Osteosarcoma - metabolism ; Osteosarcoma cells ; p38 Mitogen-Activated Protein Kinases - metabolism ; Pharmacology ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism ; RhoA protein ; Signal Transduction - drug effects ; Signaling ; Simvastatin ; Simvastatin - pharmacology ; Xenograft Model Antitumor Assays</subject><ispartof>Molecular cancer therapeutics, 2017-01, Vol.16 (1), p.182-192</ispartof><rights>2016 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research Inc Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-e7f5e7cb54da06e569a879445ece550007b915571f4ae631b55e150c6aaeb7423</citedby><cites>FETCH-LOGICAL-c502t-e7f5e7cb54da06e569a879445ece550007b915571f4ae631b55e150c6aaeb7423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3357,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27799356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamel, Walied A</creatorcontrib><creatorcontrib>Sugihara, Eiji</creatorcontrib><creatorcontrib>Nobusue, Hiroyuki</creatorcontrib><creatorcontrib>Yamaguchi-Iwai, Sayaka</creatorcontrib><creatorcontrib>Onishi, Nobuyuki</creatorcontrib><creatorcontrib>Maki, Kenta</creatorcontrib><creatorcontrib>Fukuchi, Yumi</creatorcontrib><creatorcontrib>Matsuo, Koichi</creatorcontrib><creatorcontrib>Muto, Akihiro</creatorcontrib><creatorcontrib>Saya, Hideyuki</creatorcontrib><creatorcontrib>Shimizu, Takatsune</creatorcontrib><title>Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity</title><title>Molecular cancer therapeutics</title><addtitle>Mol Cancer Ther</addtitle><description>Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of osteosarcoma cells in vitro Simvastatin also induced apoptosis in osteosarcoma cells in a manner dependent on inhibition of the mevalonate biosynthetic pathway. It also disrupted the function of the small GTPase RhoA and induced activation of AMP-activated protein kinase (AMPK) and p38 MAPK, with AMPK functioning upstream of p38 MAPK. Inhibitors of AMPK or p38 MAPK attenuated the induction of apoptosis by simvastatin, whereas metformin enhanced this effect of simvastatin by further activation of AMPK. Although treatment with simvastatin alone did not inhibit osteosarcoma tumor growth in vivo, its combination with a fat-free diet induced a significant antitumor effect that was enhanced further by metformin administration. Our findings suggest that simvastatin induces apoptosis in osteosarcoma cells via activation of AMPK and p38 MAPK, and that, in combination with other approaches, it holds therapeutic potential for osteosarcoma. Mol Cancer Ther; 16(1); 182-92. ©2016 AACR.</description><subject>Activation</subject><subject>AMP</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone cancer</subject><subject>Bone Neoplasms - genetics</subject><subject>Bone Neoplasms - metabolism</subject><subject>Bone tumors</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement - drug effects</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemical compounds</subject><subject>Disease Models, Animal</subject><subject>Drugs</subject><subject>Fat-free</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Guanosine triphosphatases</subject><subject>Humans</subject><subject>Kinases</subject><subject>MAP kinase</subject><subject>Metformin</subject><subject>Metformin - pharmacology</subject><subject>Mevalonic acid</subject><subject>Mice</subject><subject>Osteosarcoma</subject><subject>Osteosarcoma - genetics</subject><subject>Osteosarcoma - metabolism</subject><subject>Osteosarcoma cells</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Pharmacology</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RhoA protein</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Simvastatin</subject><subject>Simvastatin - pharmacology</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1535-7163</issn><issn>1538-8514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAUhS0EoqXwE0CW2LBxa8e5frCLRjyq6ahVW9aW43GKqyQOsVNp_j0OU1iwuldX3znSPQeh94yeMwbqggEHIpng54PLhAlCa61foNNyV0QBq1_-2Y_MCXqT0iOlTOmKvUYnlZRacxCnaLkLw5NN2eYwkstxvzi_x80UpxxTSDiM-DplH5OdXRws3vi-T59xg7f-gG9j73Hs8O3P2JBmd7O9mLjCu-Zmi-_Cw2j7MD6sDs2YQ16GOOPG5fAU8uEtetXZPvl3z_MM_fj65X7znVxdf7vcNFfEAa0y8bIDL10L9d5S4UFoq6Sua_DOA1BKZasZgGRdbb3grAXwDKgT1vpW1hU_Q5-OvtMcfy0-ZTOE5MoPdvRxSYYpXmwqKXhBP_6HPsZlLk8USiteElVUFQqOlJtjSrPvzDSHwc4Hw6hZezFr5mbN3Ow294YJs_ZSdB-e3Zd28Pt_qr9F8N_8ZIec</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Kamel, Walied A</creator><creator>Sugihara, Eiji</creator><creator>Nobusue, Hiroyuki</creator><creator>Yamaguchi-Iwai, Sayaka</creator><creator>Onishi, Nobuyuki</creator><creator>Maki, Kenta</creator><creator>Fukuchi, Yumi</creator><creator>Matsuo, Koichi</creator><creator>Muto, Akihiro</creator><creator>Saya, Hideyuki</creator><creator>Shimizu, Takatsune</creator><general>American Association for Cancer Research Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity</title><author>Kamel, Walied A ; Sugihara, Eiji ; Nobusue, Hiroyuki ; Yamaguchi-Iwai, Sayaka ; Onishi, Nobuyuki ; Maki, Kenta ; Fukuchi, Yumi ; Matsuo, Koichi ; Muto, Akihiro ; Saya, Hideyuki ; Shimizu, Takatsune</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-e7f5e7cb54da06e569a879445ece550007b915571f4ae631b55e150c6aaeb7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>AMP</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone cancer</topic><topic>Bone Neoplasms - genetics</topic><topic>Bone Neoplasms - metabolism</topic><topic>Bone tumors</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement - drug effects</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemical compounds</topic><topic>Disease Models, Animal</topic><topic>Drugs</topic><topic>Fat-free</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Guanosine triphosphatases</topic><topic>Humans</topic><topic>Kinases</topic><topic>MAP kinase</topic><topic>Metformin</topic><topic>Metformin - pharmacology</topic><topic>Mevalonic acid</topic><topic>Mice</topic><topic>Osteosarcoma</topic><topic>Osteosarcoma - genetics</topic><topic>Osteosarcoma - metabolism</topic><topic>Osteosarcoma cells</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Pharmacology</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RhoA protein</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Simvastatin</topic><topic>Simvastatin - pharmacology</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamel, Walied A</creatorcontrib><creatorcontrib>Sugihara, Eiji</creatorcontrib><creatorcontrib>Nobusue, Hiroyuki</creatorcontrib><creatorcontrib>Yamaguchi-Iwai, Sayaka</creatorcontrib><creatorcontrib>Onishi, Nobuyuki</creatorcontrib><creatorcontrib>Maki, Kenta</creatorcontrib><creatorcontrib>Fukuchi, Yumi</creatorcontrib><creatorcontrib>Matsuo, Koichi</creatorcontrib><creatorcontrib>Muto, Akihiro</creatorcontrib><creatorcontrib>Saya, Hideyuki</creatorcontrib><creatorcontrib>Shimizu, Takatsune</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cancer therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamel, Walied A</au><au>Sugihara, Eiji</au><au>Nobusue, Hiroyuki</au><au>Yamaguchi-Iwai, Sayaka</au><au>Onishi, Nobuyuki</au><au>Maki, Kenta</au><au>Fukuchi, Yumi</au><au>Matsuo, Koichi</au><au>Muto, Akihiro</au><au>Saya, Hideyuki</au><au>Shimizu, Takatsune</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity</atitle><jtitle>Molecular cancer therapeutics</jtitle><addtitle>Mol Cancer Ther</addtitle><date>2017-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>182</spage><epage>192</epage><pages>182-192</pages><issn>1535-7163</issn><eissn>1538-8514</eissn><abstract>Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of osteosarcoma cells in vitro Simvastatin also induced apoptosis in osteosarcoma cells in a manner dependent on inhibition of the mevalonate biosynthetic pathway. It also disrupted the function of the small GTPase RhoA and induced activation of AMP-activated protein kinase (AMPK) and p38 MAPK, with AMPK functioning upstream of p38 MAPK. Inhibitors of AMPK or p38 MAPK attenuated the induction of apoptosis by simvastatin, whereas metformin enhanced this effect of simvastatin by further activation of AMPK. Although treatment with simvastatin alone did not inhibit osteosarcoma tumor growth in vivo, its combination with a fat-free diet induced a significant antitumor effect that was enhanced further by metformin administration. Our findings suggest that simvastatin induces apoptosis in osteosarcoma cells via activation of AMPK and p38 MAPK, and that, in combination with other approaches, it holds therapeutic potential for osteosarcoma. Mol Cancer Ther; 16(1); 182-92. ©2016 AACR.</abstract><cop>United States</cop><pub>American Association for Cancer Research Inc</pub><pmid>27799356</pmid><doi>10.1158/1535-7163.mct-16-0499</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-7163
ispartof Molecular cancer therapeutics, 2017-01, Vol.16 (1), p.182-192
issn 1535-7163
1538-8514
language eng
recordid cdi_proquest_miscellaneous_1835002763
source MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals
subjects Activation
AMP
AMP-activated protein kinase
AMP-Activated Protein Kinases - metabolism
Animals
Anticancer properties
Antitumor activity
Apoptosis
Apoptosis - drug effects
Biocompatibility
Biomedical materials
Bone cancer
Bone Neoplasms - genetics
Bone Neoplasms - metabolism
Bone tumors
Cancer
Cell Line, Tumor
Cell migration
Cell Movement - drug effects
Cell proliferation
Cell Proliferation - drug effects
Chemical compounds
Disease Models, Animal
Drugs
Fat-free
Gene Expression Regulation, Neoplastic
Guanosine triphosphatases
Humans
Kinases
MAP kinase
Metformin
Metformin - pharmacology
Mevalonic acid
Mice
Osteosarcoma
Osteosarcoma - genetics
Osteosarcoma - metabolism
Osteosarcoma cells
p38 Mitogen-Activated Protein Kinases - metabolism
Pharmacology
rhoA GTP-Binding Protein - genetics
rhoA GTP-Binding Protein - metabolism
RhoA protein
Signal Transduction - drug effects
Signaling
Simvastatin
Simvastatin - pharmacology
Xenograft Model Antitumor Assays
title Simvastatin-Induced Apoptosis in Osteosarcoma Cells: A Key Role of RhoA-AMPK/p38 MAPK Signaling in Antitumor Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simvastatin-Induced%20Apoptosis%20in%20Osteosarcoma%20Cells:%20A%20Key%20Role%20of%20RhoA-AMPK/p38%20MAPK%20Signaling%20in%20Antitumor%20Activity&rft.jtitle=Molecular%20cancer%20therapeutics&rft.au=Kamel,%20Walied%20A&rft.date=2017-01&rft.volume=16&rft.issue=1&rft.spage=182&rft.epage=192&rft.pages=182-192&rft.issn=1535-7163&rft.eissn=1538-8514&rft_id=info:doi/10.1158/1535-7163.mct-16-0499&rft_dat=%3Cproquest_cross%3E1983851808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983851808&rft_id=info:pmid/27799356&rfr_iscdi=true