Quantifying losses and thermodynamic limits in nanophotonic solar cells
Spatially resolved measurements of the absorption, internal quantum efficiency and photoluminescence quantum yield of InP single nanowire solar cells allow the determination of intrinsic losses and thermodynamic limits of these nanophotonic devices. Nanophotonic engineering shows great potential for...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2016-12, Vol.11 (12), p.1071-1075 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1075 |
---|---|
container_issue | 12 |
container_start_page | 1071 |
container_title | Nature nanotechnology |
container_volume | 11 |
creator | Mann, Sander A. Oener, Sebastian Z. Cavalli, Alessandro Haverkort, Jos E. M. Bakkers, Erik P. A. M. Garnett, Erik C. |
description | Spatially resolved measurements of the absorption, internal quantum efficiency and photoluminescence quantum yield of InP single nanowire solar cells allow the determination of intrinsic losses and thermodynamic limits of these nanophotonic devices.
Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly
1
,
2
and the record open-circuit voltages are becoming comparable to the records for planar equivalents
3
,
4
. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells
5
,
6
. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics
7
,
8
,
9
,
10
,
11
,
12
. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size
6
. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V). |
doi_str_mv | 10.1038/nnano.2016.162 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835001976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835001976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-7eeb8f6cb7ea2e41c628a11d21bfea16c1d7a1510a5843bdf38dc70014d9e2db3</originalsourceid><addsrcrecordid>eNptkMFLwzAUh4Mobk6vHqXgxUu7vLRN0qMMncJABD2XNEm3jjaZSXvYf2_qpoh4Ssj78nvvfQhdA04Ap3xujDA2IRhoApScoCmwjMdpWuSnP3fOJujC-y3GOSlIdo4mhFHgJGdTtHwdhOmbet-YddRa77WPhFFRv9Gus2pvRNfIqG26pvdRY6Kx3W5je2vCs7etcJHUbesv0VktWq-vjucMvT8-vC2e4tXL8nlxv4plxnAfM60rXlNZMS2IzkBSwgWAIlDVWgCVoJiAHLDIeZZWqk65kgxjyFShiarSGbo75O6c_Ri078uu8eMEwmg7-BJ4mge8YDSgt3_QrR2cCdMFKqOYpHnGA5UcKOnC9k7X5c41nXD7EnA5Ki6_FJej4jIoDh9ujrFD1Wn1g387DcD8APhQMmvtfvX9P_ITsuiIWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846023548</pqid></control><display><type>article</type><title>Quantifying losses and thermodynamic limits in nanophotonic solar cells</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mann, Sander A. ; Oener, Sebastian Z. ; Cavalli, Alessandro ; Haverkort, Jos E. M. ; Bakkers, Erik P. A. M. ; Garnett, Erik C.</creator><creatorcontrib>Mann, Sander A. ; Oener, Sebastian Z. ; Cavalli, Alessandro ; Haverkort, Jos E. M. ; Bakkers, Erik P. A. M. ; Garnett, Erik C.</creatorcontrib><description>Spatially resolved measurements of the absorption, internal quantum efficiency and photoluminescence quantum yield of InP single nanowire solar cells allow the determination of intrinsic losses and thermodynamic limits of these nanophotonic devices.
Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly
1
,
2
and the record open-circuit voltages are becoming comparable to the records for planar equivalents
3
,
4
. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells
5
,
6
. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics
7
,
8
,
9
,
10
,
11
,
12
. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size
6
. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2016.162</identifier><identifier>PMID: 27618257</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 147/28 ; 639/624/399/1016 ; 639/766/1130/2799 ; 639/766/930/527/1820 ; 639/925/927/1007 ; 639/925/927/1021 ; letter ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Nanowires ; Photovoltaics ; Scanning electron microscopy ; Solar cells ; Sun</subject><ispartof>Nature nanotechnology, 2016-12, Vol.11 (12), p.1071-1075</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Dec 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-7eeb8f6cb7ea2e41c628a11d21bfea16c1d7a1510a5843bdf38dc70014d9e2db3</citedby><cites>FETCH-LOGICAL-c470t-7eeb8f6cb7ea2e41c628a11d21bfea16c1d7a1510a5843bdf38dc70014d9e2db3</cites><orcidid>0000-0002-4939-4587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2016.162$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2016.162$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27618257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mann, Sander A.</creatorcontrib><creatorcontrib>Oener, Sebastian Z.</creatorcontrib><creatorcontrib>Cavalli, Alessandro</creatorcontrib><creatorcontrib>Haverkort, Jos E. M.</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Garnett, Erik C.</creatorcontrib><title>Quantifying losses and thermodynamic limits in nanophotonic solar cells</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Spatially resolved measurements of the absorption, internal quantum efficiency and photoluminescence quantum yield of InP single nanowire solar cells allow the determination of intrinsic losses and thermodynamic limits of these nanophotonic devices.
Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly
1
,
2
and the record open-circuit voltages are becoming comparable to the records for planar equivalents
3
,
4
. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells
5
,
6
. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics
7
,
8
,
9
,
10
,
11
,
12
. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size
6
. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).</description><subject>140/125</subject><subject>147/28</subject><subject>639/624/399/1016</subject><subject>639/766/1130/2799</subject><subject>639/766/930/527/1820</subject><subject>639/925/927/1007</subject><subject>639/925/927/1021</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanowires</subject><subject>Photovoltaics</subject><subject>Scanning electron microscopy</subject><subject>Solar cells</subject><subject>Sun</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkMFLwzAUh4Mobk6vHqXgxUu7vLRN0qMMncJABD2XNEm3jjaZSXvYf2_qpoh4Ssj78nvvfQhdA04Ap3xujDA2IRhoApScoCmwjMdpWuSnP3fOJujC-y3GOSlIdo4mhFHgJGdTtHwdhOmbet-YddRa77WPhFFRv9Gus2pvRNfIqG26pvdRY6Kx3W5je2vCs7etcJHUbesv0VktWq-vjucMvT8-vC2e4tXL8nlxv4plxnAfM60rXlNZMS2IzkBSwgWAIlDVWgCVoJiAHLDIeZZWqk65kgxjyFShiarSGbo75O6c_Ri078uu8eMEwmg7-BJ4mge8YDSgt3_QrR2cCdMFKqOYpHnGA5UcKOnC9k7X5c41nXD7EnA5Ki6_FJej4jIoDh9ujrFD1Wn1g387DcD8APhQMmvtfvX9P_ITsuiIWA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Mann, Sander A.</creator><creator>Oener, Sebastian Z.</creator><creator>Cavalli, Alessandro</creator><creator>Haverkort, Jos E. M.</creator><creator>Bakkers, Erik P. A. M.</creator><creator>Garnett, Erik C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4939-4587</orcidid></search><sort><creationdate>20161201</creationdate><title>Quantifying losses and thermodynamic limits in nanophotonic solar cells</title><author>Mann, Sander A. ; Oener, Sebastian Z. ; Cavalli, Alessandro ; Haverkort, Jos E. M. ; Bakkers, Erik P. A. M. ; Garnett, Erik C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-7eeb8f6cb7ea2e41c628a11d21bfea16c1d7a1510a5843bdf38dc70014d9e2db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/125</topic><topic>147/28</topic><topic>639/624/399/1016</topic><topic>639/766/1130/2799</topic><topic>639/766/930/527/1820</topic><topic>639/925/927/1007</topic><topic>639/925/927/1021</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanowires</topic><topic>Photovoltaics</topic><topic>Scanning electron microscopy</topic><topic>Solar cells</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mann, Sander A.</creatorcontrib><creatorcontrib>Oener, Sebastian Z.</creatorcontrib><creatorcontrib>Cavalli, Alessandro</creatorcontrib><creatorcontrib>Haverkort, Jos E. M.</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Garnett, Erik C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mann, Sander A.</au><au>Oener, Sebastian Z.</au><au>Cavalli, Alessandro</au><au>Haverkort, Jos E. M.</au><au>Bakkers, Erik P. A. M.</au><au>Garnett, Erik C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying losses and thermodynamic limits in nanophotonic solar cells</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>11</volume><issue>12</issue><spage>1071</spage><epage>1075</epage><pages>1071-1075</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Spatially resolved measurements of the absorption, internal quantum efficiency and photoluminescence quantum yield of InP single nanowire solar cells allow the determination of intrinsic losses and thermodynamic limits of these nanophotonic devices.
Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly
1
,
2
and the record open-circuit voltages are becoming comparable to the records for planar equivalents
3
,
4
. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells
5
,
6
. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics
7
,
8
,
9
,
10
,
11
,
12
. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size
6
. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27618257</pmid><doi>10.1038/nnano.2016.162</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4939-4587</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2016-12, Vol.11 (12), p.1071-1075 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835001976 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 140/125 147/28 639/624/399/1016 639/766/1130/2799 639/766/930/527/1820 639/925/927/1007 639/925/927/1021 letter Materials Science Nanotechnology Nanotechnology and Microengineering Nanowires Photovoltaics Scanning electron microscopy Solar cells Sun |
title | Quantifying losses and thermodynamic limits in nanophotonic solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20losses%20and%20thermodynamic%20limits%20in%20nanophotonic%20solar%20cells&rft.jtitle=Nature%20nanotechnology&rft.au=Mann,%20Sander%20A.&rft.date=2016-12-01&rft.volume=11&rft.issue=12&rft.spage=1071&rft.epage=1075&rft.pages=1071-1075&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2016.162&rft_dat=%3Cproquest_cross%3E1835001976%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846023548&rft_id=info:pmid/27618257&rfr_iscdi=true |