Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by react...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2016-12, Vol.231 (12), p.2570-2581 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2581 |
---|---|
container_issue | 12 |
container_start_page | 2570 |
container_title | Journal of cellular physiology |
container_volume | 231 |
creator | Yang, Yuhui Karakhanova, Svetlana Hartwig, Werner D'Haese, Jan G. Philippov, Pavel P. Werner, Jens Bazhin, Alexandr V. |
description | Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the “vicious cycle” between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria‐targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria‐targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria‐targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria‐targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570–2581, 2016. © 2016 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jcp.25349 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1832245426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1832245426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6009-786a4da1bb43b796fe3bdfe34c26f62edf72383896a490842fc26caa2d4ae9b73</originalsourceid><addsrcrecordid>eNp1kN1PwjAUxRujEfx48B8wTXzRh2m_1q2-GVSUIBjE6FvTdZ0Mx4btUPnvrSDEmPhyb3LP756cHAAOMDrFCJGzsZ6ekpAysQGaGIkoYDwkm6DpNRyIkOEG2HFujBASgtJt0CA8FqEQYRMM7vK60qOqTG2uoCpT-PtQwEH_AeYlbKlSG3sOe9W7KeBQ2RdTO5hVFl6Uda4XKhyOjFXT-R7YylThzP7P3gWP11fD1k3Q7bdvWxfdQHMfJIhirliqcJIwmkSCZ4YmqR9ME55xYtIsIjSmsfCYQDEjmRe0UiRlyogkorvgeOk7tdXbzLhaTnKnTVGo0lQzJ3FMCWEhI9yjR3_QcTWzpU_nKUwEE3GMPHWypLStnLMmk1ObT5SdS4zkd9HSFy0XRXv28MdxlkxMuiZXzXrgbAl85IWZ_-8kO637lWWw_MhdbT7XH8q-Sh7RKJRPvba8iUTv8rnbkW36BfyllW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812949880</pqid></control><display><type>article</type><title>Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Yuhui ; Karakhanova, Svetlana ; Hartwig, Werner ; D'Haese, Jan G. ; Philippov, Pavel P. ; Werner, Jens ; Bazhin, Alexandr V.</creator><creatorcontrib>Yang, Yuhui ; Karakhanova, Svetlana ; Hartwig, Werner ; D'Haese, Jan G. ; Philippov, Pavel P. ; Werner, Jens ; Bazhin, Alexandr V.</creatorcontrib><description>Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the “vicious cycle” between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria‐targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria‐targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria‐targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria‐targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570–2581, 2016. © 2016 Wiley Periodicals, Inc.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.25349</identifier><identifier>PMID: 26895995</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Antioxidants ; DNA, Mitochondrial - genetics ; Drug Delivery Systems ; Humans ; Mitochondria - drug effects ; Mitochondria - metabolism ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Reactive Oxygen Species - metabolism</subject><ispartof>Journal of cellular physiology, 2016-12, Vol.231 (12), p.2570-2581</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6009-786a4da1bb43b796fe3bdfe34c26f62edf72383896a490842fc26caa2d4ae9b73</citedby><cites>FETCH-LOGICAL-c6009-786a4da1bb43b796fe3bdfe34c26f62edf72383896a490842fc26caa2d4ae9b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.25349$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.25349$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26895995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yuhui</creatorcontrib><creatorcontrib>Karakhanova, Svetlana</creatorcontrib><creatorcontrib>Hartwig, Werner</creatorcontrib><creatorcontrib>D'Haese, Jan G.</creatorcontrib><creatorcontrib>Philippov, Pavel P.</creatorcontrib><creatorcontrib>Werner, Jens</creatorcontrib><creatorcontrib>Bazhin, Alexandr V.</creatorcontrib><title>Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the “vicious cycle” between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria‐targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria‐targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria‐targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria‐targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570–2581, 2016. © 2016 Wiley Periodicals, Inc.</description><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Antioxidants</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Drug Delivery Systems</subject><subject>Humans</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kN1PwjAUxRujEfx48B8wTXzRh2m_1q2-GVSUIBjE6FvTdZ0Mx4btUPnvrSDEmPhyb3LP756cHAAOMDrFCJGzsZ6ekpAysQGaGIkoYDwkm6DpNRyIkOEG2HFujBASgtJt0CA8FqEQYRMM7vK60qOqTG2uoCpT-PtQwEH_AeYlbKlSG3sOe9W7KeBQ2RdTO5hVFl6Uda4XKhyOjFXT-R7YylThzP7P3gWP11fD1k3Q7bdvWxfdQHMfJIhirliqcJIwmkSCZ4YmqR9ME55xYtIsIjSmsfCYQDEjmRe0UiRlyogkorvgeOk7tdXbzLhaTnKnTVGo0lQzJ3FMCWEhI9yjR3_QcTWzpU_nKUwEE3GMPHWypLStnLMmk1ObT5SdS4zkd9HSFy0XRXv28MdxlkxMuiZXzXrgbAl85IWZ_-8kO637lWWw_MhdbT7XH8q-Sh7RKJRPvba8iUTv8rnbkW36BfyllW4</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Yang, Yuhui</creator><creator>Karakhanova, Svetlana</creator><creator>Hartwig, Werner</creator><creator>D'Haese, Jan G.</creator><creator>Philippov, Pavel P.</creator><creator>Werner, Jens</creator><creator>Bazhin, Alexandr V.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope></search><sort><creationdate>201612</creationdate><title>Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy</title><author>Yang, Yuhui ; Karakhanova, Svetlana ; Hartwig, Werner ; D'Haese, Jan G. ; Philippov, Pavel P. ; Werner, Jens ; Bazhin, Alexandr V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6009-786a4da1bb43b796fe3bdfe34c26f62edf72383896a490842fc26caa2d4ae9b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Antioxidants</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Drug Delivery Systems</topic><topic>Humans</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuhui</creatorcontrib><creatorcontrib>Karakhanova, Svetlana</creatorcontrib><creatorcontrib>Hartwig, Werner</creatorcontrib><creatorcontrib>D'Haese, Jan G.</creatorcontrib><creatorcontrib>Philippov, Pavel P.</creatorcontrib><creatorcontrib>Werner, Jens</creatorcontrib><creatorcontrib>Bazhin, Alexandr V.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuhui</au><au>Karakhanova, Svetlana</au><au>Hartwig, Werner</au><au>D'Haese, Jan G.</au><au>Philippov, Pavel P.</au><au>Werner, Jens</au><au>Bazhin, Alexandr V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>2016-12</date><risdate>2016</risdate><volume>231</volume><issue>12</issue><spage>2570</spage><epage>2581</epage><pages>2570-2581</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the “vicious cycle” between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria‐targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria‐targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria‐targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria‐targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570–2581, 2016. © 2016 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26895995</pmid><doi>10.1002/jcp.25349</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2016-12, Vol.231 (12), p.2570-2581 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_1832245426 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Antioxidants DNA, Mitochondrial - genetics Drug Delivery Systems Humans Mitochondria - drug effects Mitochondria - metabolism Neoplasms - drug therapy Neoplasms - metabolism Reactive Oxygen Species - metabolism |
title | Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondria%20and%20Mitochondrial%20ROS%20in%20Cancer:%20Novel%20Targets%20for%20Anticancer%20Therapy&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Yang,%20Yuhui&rft.date=2016-12&rft.volume=231&rft.issue=12&rft.spage=2570&rft.epage=2581&rft.pages=2570-2581&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.25349&rft_dat=%3Cproquest_cross%3E1832245426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812949880&rft_id=info:pmid/26895995&rfr_iscdi=true |