Selecting a probability distribution for extreme rainfall series in Malaysia

This paper discusses the comparative assessment of eight candidate distributions in providing accurate and reliable maximum rainfall estimates for Malaysia. The models considered were the Gamma, Generalised Normal, Generalised Pareto, Generalised Extreme Value, Gumbel, Log Pearson Type III, Pearson...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2002, Vol.45 (2), p.63-68
Hauptverfasser: ZALINA, M. D, DESA, M. N. M, NGUYEN, V-T-V, KASSIM, A. H. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 2
container_start_page 63
container_title Water science and technology
container_volume 45
creator ZALINA, M. D
DESA, M. N. M
NGUYEN, V-T-V
KASSIM, A. H. M
description This paper discusses the comparative assessment of eight candidate distributions in providing accurate and reliable maximum rainfall estimates for Malaysia. The models considered were the Gamma, Generalised Normal, Generalised Pareto, Generalised Extreme Value, Gumbel, Log Pearson Type III, Pearson Type III and Wakeby. Annual maximum rainfall series for one-hour resolution from a network of seventeen automatic gauging stations located throughout Peninsular Malaysia were selected for this study. The length of rainfall records varies from twenty-three to twenty-eight years. Model parameters were estimated using the L-moment method. The quantitative assessment of the descriptive ability of each model was based on the Probability Plot Correlation Coefficient test combined with root mean squared error, relative root mean squared error and maximum absolute deviation. Bootstrap resampling was employed to investigate the extrapolative ability of each distribution. On the basis of these comparisons, it can be concluded that the GEV distribution is the most appropriate distribution for describing the annual maximum rainfall series in Malaysia.
doi_str_mv 10.2166/wst.2002.0028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18315033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943310436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-8e60570839c94bdd57d55a1350bef61d2a46573c768154b7d4fa1e83677a03673</originalsourceid><addsrcrecordid>eNp90c1r2zAYBnCxdixpt-OuQzBaenH2vnr1YR9HWD8gpYdtZyPb8lBw7FSyafPfTyGBQA89SDrox8MrPYx9RVgI1PrHSxwXAkAs0so_sDkWhc4KQ-KMXWAuiQqJiOdsDsJQhkLQjF3EuAYAQxI-sRliXkCKmrPVb9e5evT9P275NgyVrXznxx1vfByDr6bRDz1vh8Dd6xjcxvFgfd_aruPRBe8i9z1_tJ3dRW8_s4_pJrovx_OS_b399Wd5n62e7h6WP1dZnQYbs9xpUAZyKupCVk2jTKOURVJQuVZjI6zUylBtdI5KVqaRrUWXkzbGQtrpkl0fctPAz5OLY7nxsXZdZ3s3TLHEnFABUYI370MQUktttEz0-xu6HqbQp2eUWKQ_RZCkk8oOqg5DjMG15Tb4jQ27FFXuyylTOeW-nHJfTvLfjqlTtXHNSR8LSODqCGysbdcG29c-npwEJQiR_gNifJMh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943310436</pqid></control><display><type>article</type><title>Selecting a probability distribution for extreme rainfall series in Malaysia</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>ZALINA, M. D ; DESA, M. N. M ; NGUYEN, V-T-V ; KASSIM, A. H. M</creator><contributor>Burlando, P</contributor><creatorcontrib>ZALINA, M. D ; DESA, M. N. M ; NGUYEN, V-T-V ; KASSIM, A. H. M ; Burlando, P</creatorcontrib><description>This paper discusses the comparative assessment of eight candidate distributions in providing accurate and reliable maximum rainfall estimates for Malaysia. The models considered were the Gamma, Generalised Normal, Generalised Pareto, Generalised Extreme Value, Gumbel, Log Pearson Type III, Pearson Type III and Wakeby. Annual maximum rainfall series for one-hour resolution from a network of seventeen automatic gauging stations located throughout Peninsular Malaysia were selected for this study. The length of rainfall records varies from twenty-three to twenty-eight years. Model parameters were estimated using the L-moment method. The quantitative assessment of the descriptive ability of each model was based on the Probability Plot Correlation Coefficient test combined with root mean squared error, relative root mean squared error and maximum absolute deviation. Bootstrap resampling was employed to investigate the extrapolative ability of each distribution. On the basis of these comparisons, it can be concluded that the GEV distribution is the most appropriate distribution for describing the annual maximum rainfall series in Malaysia.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 1843394111</identifier><identifier>ISBN: 9781843394112</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2002.0028</identifier><identifier>PMID: 11890166</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Annual rainfall ; Correlation coefficient ; Correlation coefficients ; Datasets ; Discharge measurement ; Distribution ; Earth, ocean, space ; Environmental Monitoring ; Exact sciences and technology ; External geophysics ; Extreme values ; Extreme weather ; Gaging stations ; Investigations ; Malaysia ; Maximum likelihood method ; Mean square errors ; Meteorology ; Models, Statistical ; Parameter estimation ; Precipitation ; Probability distribution ; Probability theory ; Rain ; Rainfall ; Resampling ; Stream discharge ; Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><ispartof>Water science and technology, 2002, Vol.45 (2), p.63-68</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright IWA Publishing Jan 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-8e60570839c94bdd57d55a1350bef61d2a46573c768154b7d4fa1e83677a03673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,4024,4050,4051,23930,23931,25140,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14052311$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11890166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Burlando, P</contributor><creatorcontrib>ZALINA, M. D</creatorcontrib><creatorcontrib>DESA, M. N. M</creatorcontrib><creatorcontrib>NGUYEN, V-T-V</creatorcontrib><creatorcontrib>KASSIM, A. H. M</creatorcontrib><title>Selecting a probability distribution for extreme rainfall series in Malaysia</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>This paper discusses the comparative assessment of eight candidate distributions in providing accurate and reliable maximum rainfall estimates for Malaysia. The models considered were the Gamma, Generalised Normal, Generalised Pareto, Generalised Extreme Value, Gumbel, Log Pearson Type III, Pearson Type III and Wakeby. Annual maximum rainfall series for one-hour resolution from a network of seventeen automatic gauging stations located throughout Peninsular Malaysia were selected for this study. The length of rainfall records varies from twenty-three to twenty-eight years. Model parameters were estimated using the L-moment method. The quantitative assessment of the descriptive ability of each model was based on the Probability Plot Correlation Coefficient test combined with root mean squared error, relative root mean squared error and maximum absolute deviation. Bootstrap resampling was employed to investigate the extrapolative ability of each distribution. On the basis of these comparisons, it can be concluded that the GEV distribution is the most appropriate distribution for describing the annual maximum rainfall series in Malaysia.</description><subject>Annual rainfall</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Discharge measurement</subject><subject>Distribution</subject><subject>Earth, ocean, space</subject><subject>Environmental Monitoring</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Extreme values</subject><subject>Extreme weather</subject><subject>Gaging stations</subject><subject>Investigations</subject><subject>Malaysia</subject><subject>Maximum likelihood method</subject><subject>Mean square errors</subject><subject>Meteorology</subject><subject>Models, Statistical</subject><subject>Parameter estimation</subject><subject>Precipitation</subject><subject>Probability distribution</subject><subject>Probability theory</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Resampling</subject><subject>Stream discharge</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>1843394111</isbn><isbn>9781843394112</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp90c1r2zAYBnCxdixpt-OuQzBaenH2vnr1YR9HWD8gpYdtZyPb8lBw7FSyafPfTyGBQA89SDrox8MrPYx9RVgI1PrHSxwXAkAs0so_sDkWhc4KQ-KMXWAuiQqJiOdsDsJQhkLQjF3EuAYAQxI-sRliXkCKmrPVb9e5evT9P275NgyVrXznxx1vfByDr6bRDz1vh8Dd6xjcxvFgfd_aruPRBe8i9z1_tJ3dRW8_s4_pJrovx_OS_b399Wd5n62e7h6WP1dZnQYbs9xpUAZyKupCVk2jTKOURVJQuVZjI6zUylBtdI5KVqaRrUWXkzbGQtrpkl0fctPAz5OLY7nxsXZdZ3s3TLHEnFABUYI370MQUktttEz0-xu6HqbQp2eUWKQ_RZCkk8oOqg5DjMG15Tb4jQ27FFXuyylTOeW-nHJfTvLfjqlTtXHNSR8LSODqCGysbdcG29c-npwEJQiR_gNifJMh</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>ZALINA, M. D</creator><creator>DESA, M. N. M</creator><creator>NGUYEN, V-T-V</creator><creator>KASSIM, A. H. M</creator><general>IWA Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>2002</creationdate><title>Selecting a probability distribution for extreme rainfall series in Malaysia</title><author>ZALINA, M. D ; DESA, M. N. M ; NGUYEN, V-T-V ; KASSIM, A. H. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-8e60570839c94bdd57d55a1350bef61d2a46573c768154b7d4fa1e83677a03673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Annual rainfall</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Discharge measurement</topic><topic>Distribution</topic><topic>Earth, ocean, space</topic><topic>Environmental Monitoring</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Extreme values</topic><topic>Extreme weather</topic><topic>Gaging stations</topic><topic>Investigations</topic><topic>Malaysia</topic><topic>Maximum likelihood method</topic><topic>Mean square errors</topic><topic>Meteorology</topic><topic>Models, Statistical</topic><topic>Parameter estimation</topic><topic>Precipitation</topic><topic>Probability distribution</topic><topic>Probability theory</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Resampling</topic><topic>Stream discharge</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZALINA, M. D</creatorcontrib><creatorcontrib>DESA, M. N. M</creatorcontrib><creatorcontrib>NGUYEN, V-T-V</creatorcontrib><creatorcontrib>KASSIM, A. H. M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZALINA, M. D</au><au>DESA, M. N. M</au><au>NGUYEN, V-T-V</au><au>KASSIM, A. H. M</au><au>Burlando, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting a probability distribution for extreme rainfall series in Malaysia</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2002</date><risdate>2002</risdate><volume>45</volume><issue>2</issue><spage>63</spage><epage>68</epage><pages>63-68</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>1843394111</isbn><isbn>9781843394112</isbn><coden>WSTED4</coden><abstract>This paper discusses the comparative assessment of eight candidate distributions in providing accurate and reliable maximum rainfall estimates for Malaysia. The models considered were the Gamma, Generalised Normal, Generalised Pareto, Generalised Extreme Value, Gumbel, Log Pearson Type III, Pearson Type III and Wakeby. Annual maximum rainfall series for one-hour resolution from a network of seventeen automatic gauging stations located throughout Peninsular Malaysia were selected for this study. The length of rainfall records varies from twenty-three to twenty-eight years. Model parameters were estimated using the L-moment method. The quantitative assessment of the descriptive ability of each model was based on the Probability Plot Correlation Coefficient test combined with root mean squared error, relative root mean squared error and maximum absolute deviation. Bootstrap resampling was employed to investigate the extrapolative ability of each distribution. On the basis of these comparisons, it can be concluded that the GEV distribution is the most appropriate distribution for describing the annual maximum rainfall series in Malaysia.</abstract><cop>London</cop><pub>IWA Publishing</pub><pmid>11890166</pmid><doi>10.2166/wst.2002.0028</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2002, Vol.45 (2), p.63-68
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_18315033
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Annual rainfall
Correlation coefficient
Correlation coefficients
Datasets
Discharge measurement
Distribution
Earth, ocean, space
Environmental Monitoring
Exact sciences and technology
External geophysics
Extreme values
Extreme weather
Gaging stations
Investigations
Malaysia
Maximum likelihood method
Mean square errors
Meteorology
Models, Statistical
Parameter estimation
Precipitation
Probability distribution
Probability theory
Rain
Rainfall
Resampling
Stream discharge
Water in the atmosphere (humidity, clouds, evaporation, precipitation)
title Selecting a probability distribution for extreme rainfall series in Malaysia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20a%20probability%20distribution%20for%20extreme%20rainfall%20series%20in%20Malaysia&rft.jtitle=Water%20science%20and%20technology&rft.au=ZALINA,%20M.%20D&rft.date=2002&rft.volume=45&rft.issue=2&rft.spage=63&rft.epage=68&rft.pages=63-68&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=1843394111&rft.isbn_list=9781843394112&rft.coden=WSTED4&rft_id=info:doi/10.2166/wst.2002.0028&rft_dat=%3Cproquest_cross%3E1943310436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943310436&rft_id=info:pmid/11890166&rfr_iscdi=true