Mutagenic mapping of helical structures in the transmembrane segments of the yeast alpha-factor receptor
The alpha-mating pheromone receptor encoded by the yeast STE2 gene is a G protein coupled receptor that initiates signaling via a MAP kinase pathway that prepares haploid cells for mating. To establish the range of allowed amino acid substitutions within transmembrane segments of this receptor, we c...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2002-04, Vol.317 (5), p.765-788 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 788 |
---|---|
container_issue | 5 |
container_start_page | 765 |
container_title | Journal of molecular biology |
container_volume | 317 |
creator | Martin, Negin P Celić, Andjelka Dumont, Mark E |
description | The alpha-mating pheromone receptor encoded by the yeast STE2 gene is a G protein coupled receptor that initiates signaling via a MAP kinase pathway that prepares haploid cells for mating. To establish the range of allowed amino acid substitutions within transmembrane segments of this receptor, we conducted extensive random mutagenesis of receptors followed by screening for receptor function. A total of 157 amino acid positions in seven different mutagenic libraries corresponding to the seven predicted transmembrane segments were analyzed, yielding 390 alleles that retain at least 60 % of normal signaling function. These alleles contained a total of 576 unique amino acid substitutions, including 61 % of all the possible amino acid changes that can arise from single base substitutions. The receptor exhibits a surprising tolerance for amino acid substitutions. Every amino acid in the mutagenized regions of the transmembrane regions could be substituted by at least one other residue. Polar amino acids were tolerated in functional receptors at 115 different positions (73 % of the total). Hydrophobic amino acids were tolerated in functional receptors at all mutagenized positions. Substitutions introducing proline residues were recovered at 53 % of all positions where they could be brought about by single base changes. Residues with charged side-chains could also be tolerated at 53 % of all positions where they were accessible through single base changes. The spectrum of allowed amino acid substitutions was characterized in terms of the hydrophobicity, radius of gyration, and charge of the allowed substitutions and mapped onto alpha-helical structures. By comparing the patterns of allowed substitutions with the recently determined structure of rhodopsin, structural features indicative of helix-helix interactions can be discerned in spite of the extreme sequence divergence between these two proteins. |
doi_str_mv | 10.1006/jmbi.2002.5444 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_18310466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18310466</sourcerecordid><originalsourceid>FETCH-LOGICAL-p238t-c4ba9b359762a8e589fbb89c087754489d117c712ca4d9914b04d4230c3a7bdb3</originalsourceid><addsrcrecordid>eNo1UD1PwzAUtBCIlsLKiDyxpfgriT2iigJSEQvMke28NK7iJNjO0H9PKsp0T-_unt4dQveUrCkhxdPBG7dmhLB1LoS4QEtKpMpkweUlWs5rljHJiwW6ifFACMm5kNdoQanKc8L4ErUfU9J76J3FXo-j6_d4aHALnbO6wzGFyaYpQMSux6kFnILuowdvZgQcYe-hT_HkObFH0DFh3Y2tzhpt0xBwAAvjPNyiq0Z3Ee7OuELf25evzVu2-3x93zzvspFxmTIrjFaG56osmJaQS9UYI5UlsiznhFLVlJa2pMxqUStFhSGiFowTy3VpasNX6PHv7hiGnwliqryLFrpu_neYYkUlp0QUxSx8OAsn46GuxuC8Dsfqvxv-C7BhZ7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18310466</pqid></control><display><type>article</type><title>Mutagenic mapping of helical structures in the transmembrane segments of the yeast alpha-factor receptor</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Martin, Negin P ; Celić, Andjelka ; Dumont, Mark E</creator><creatorcontrib>Martin, Negin P ; Celić, Andjelka ; Dumont, Mark E</creatorcontrib><description>The alpha-mating pheromone receptor encoded by the yeast STE2 gene is a G protein coupled receptor that initiates signaling via a MAP kinase pathway that prepares haploid cells for mating. To establish the range of allowed amino acid substitutions within transmembrane segments of this receptor, we conducted extensive random mutagenesis of receptors followed by screening for receptor function. A total of 157 amino acid positions in seven different mutagenic libraries corresponding to the seven predicted transmembrane segments were analyzed, yielding 390 alleles that retain at least 60 % of normal signaling function. These alleles contained a total of 576 unique amino acid substitutions, including 61 % of all the possible amino acid changes that can arise from single base substitutions. The receptor exhibits a surprising tolerance for amino acid substitutions. Every amino acid in the mutagenized regions of the transmembrane regions could be substituted by at least one other residue. Polar amino acids were tolerated in functional receptors at 115 different positions (73 % of the total). Hydrophobic amino acids were tolerated in functional receptors at all mutagenized positions. Substitutions introducing proline residues were recovered at 53 % of all positions where they could be brought about by single base changes. Residues with charged side-chains could also be tolerated at 53 % of all positions where they were accessible through single base changes. The spectrum of allowed amino acid substitutions was characterized in terms of the hydrophobicity, radius of gyration, and charge of the allowed substitutions and mapped onto alpha-helical structures. By comparing the patterns of allowed substitutions with the recently determined structure of rhodopsin, structural features indicative of helix-helix interactions can be discerned in spite of the extreme sequence divergence between these two proteins.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1006/jmbi.2002.5444</identifier><identifier>PMID: 11955023</identifier><language>eng</language><publisher>England</publisher><subject>a-factor receptors ; a-mating pheromone receptor ; Alleles ; Amino Acid Sequence ; Amino Acid Substitution - genetics ; Cell Membrane - metabolism ; Databases, Genetic ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; mutagenic mapping ; Mutation - genetics ; Protein Conformation ; Receptors, Cell Surface - chemistry ; Receptors, Cell Surface - genetics ; Receptors, Mating Factor ; Receptors, Peptide - chemistry ; Receptors, Peptide - genetics ; Receptors, Peptide - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - genetics ; STE2 gene ; Structure-Activity Relationship ; Transcription Factors</subject><ispartof>Journal of molecular biology, 2002-04, Vol.317 (5), p.765-788</ispartof><rights>Copyright 2002 Elsevier Science Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11955023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Negin P</creatorcontrib><creatorcontrib>Celić, Andjelka</creatorcontrib><creatorcontrib>Dumont, Mark E</creatorcontrib><title>Mutagenic mapping of helical structures in the transmembrane segments of the yeast alpha-factor receptor</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The alpha-mating pheromone receptor encoded by the yeast STE2 gene is a G protein coupled receptor that initiates signaling via a MAP kinase pathway that prepares haploid cells for mating. To establish the range of allowed amino acid substitutions within transmembrane segments of this receptor, we conducted extensive random mutagenesis of receptors followed by screening for receptor function. A total of 157 amino acid positions in seven different mutagenic libraries corresponding to the seven predicted transmembrane segments were analyzed, yielding 390 alleles that retain at least 60 % of normal signaling function. These alleles contained a total of 576 unique amino acid substitutions, including 61 % of all the possible amino acid changes that can arise from single base substitutions. The receptor exhibits a surprising tolerance for amino acid substitutions. Every amino acid in the mutagenized regions of the transmembrane regions could be substituted by at least one other residue. Polar amino acids were tolerated in functional receptors at 115 different positions (73 % of the total). Hydrophobic amino acids were tolerated in functional receptors at all mutagenized positions. Substitutions introducing proline residues were recovered at 53 % of all positions where they could be brought about by single base changes. Residues with charged side-chains could also be tolerated at 53 % of all positions where they were accessible through single base changes. The spectrum of allowed amino acid substitutions was characterized in terms of the hydrophobicity, radius of gyration, and charge of the allowed substitutions and mapped onto alpha-helical structures. By comparing the patterns of allowed substitutions with the recently determined structure of rhodopsin, structural features indicative of helix-helix interactions can be discerned in spite of the extreme sequence divergence between these two proteins.</description><subject>a-factor receptors</subject><subject>a-mating pheromone receptor</subject><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>Databases, Genetic</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>mutagenic mapping</subject><subject>Mutation - genetics</subject><subject>Protein Conformation</subject><subject>Receptors, Cell Surface - chemistry</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Mating Factor</subject><subject>Receptors, Peptide - chemistry</subject><subject>Receptors, Peptide - genetics</subject><subject>Receptors, Peptide - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>STE2 gene</subject><subject>Structure-Activity Relationship</subject><subject>Transcription Factors</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1UD1PwzAUtBCIlsLKiDyxpfgriT2iigJSEQvMke28NK7iJNjO0H9PKsp0T-_unt4dQveUrCkhxdPBG7dmhLB1LoS4QEtKpMpkweUlWs5rljHJiwW6ifFACMm5kNdoQanKc8L4ErUfU9J76J3FXo-j6_d4aHALnbO6wzGFyaYpQMSux6kFnILuowdvZgQcYe-hT_HkObFH0DFh3Y2tzhpt0xBwAAvjPNyiq0Z3Ee7OuELf25evzVu2-3x93zzvspFxmTIrjFaG56osmJaQS9UYI5UlsiznhFLVlJa2pMxqUStFhSGiFowTy3VpasNX6PHv7hiGnwliqryLFrpu_neYYkUlp0QUxSx8OAsn46GuxuC8Dsfqvxv-C7BhZ7k</recordid><startdate>20020412</startdate><enddate>20020412</enddate><creator>Martin, Negin P</creator><creator>Celić, Andjelka</creator><creator>Dumont, Mark E</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TM</scope><scope>M7N</scope></search><sort><creationdate>20020412</creationdate><title>Mutagenic mapping of helical structures in the transmembrane segments of the yeast alpha-factor receptor</title><author>Martin, Negin P ; Celić, Andjelka ; Dumont, Mark E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p238t-c4ba9b359762a8e589fbb89c087754489d117c712ca4d9914b04d4230c3a7bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>a-factor receptors</topic><topic>a-mating pheromone receptor</topic><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>Databases, Genetic</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>mutagenic mapping</topic><topic>Mutation - genetics</topic><topic>Protein Conformation</topic><topic>Receptors, Cell Surface - chemistry</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Mating Factor</topic><topic>Receptors, Peptide - chemistry</topic><topic>Receptors, Peptide - genetics</topic><topic>Receptors, Peptide - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>STE2 gene</topic><topic>Structure-Activity Relationship</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Negin P</creatorcontrib><creatorcontrib>Celić, Andjelka</creatorcontrib><creatorcontrib>Dumont, Mark E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Negin P</au><au>Celić, Andjelka</au><au>Dumont, Mark E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutagenic mapping of helical structures in the transmembrane segments of the yeast alpha-factor receptor</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2002-04-12</date><risdate>2002</risdate><volume>317</volume><issue>5</issue><spage>765</spage><epage>788</epage><pages>765-788</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The alpha-mating pheromone receptor encoded by the yeast STE2 gene is a G protein coupled receptor that initiates signaling via a MAP kinase pathway that prepares haploid cells for mating. To establish the range of allowed amino acid substitutions within transmembrane segments of this receptor, we conducted extensive random mutagenesis of receptors followed by screening for receptor function. A total of 157 amino acid positions in seven different mutagenic libraries corresponding to the seven predicted transmembrane segments were analyzed, yielding 390 alleles that retain at least 60 % of normal signaling function. These alleles contained a total of 576 unique amino acid substitutions, including 61 % of all the possible amino acid changes that can arise from single base substitutions. The receptor exhibits a surprising tolerance for amino acid substitutions. Every amino acid in the mutagenized regions of the transmembrane regions could be substituted by at least one other residue. Polar amino acids were tolerated in functional receptors at 115 different positions (73 % of the total). Hydrophobic amino acids were tolerated in functional receptors at all mutagenized positions. Substitutions introducing proline residues were recovered at 53 % of all positions where they could be brought about by single base changes. Residues with charged side-chains could also be tolerated at 53 % of all positions where they were accessible through single base changes. The spectrum of allowed amino acid substitutions was characterized in terms of the hydrophobicity, radius of gyration, and charge of the allowed substitutions and mapped onto alpha-helical structures. By comparing the patterns of allowed substitutions with the recently determined structure of rhodopsin, structural features indicative of helix-helix interactions can be discerned in spite of the extreme sequence divergence between these two proteins.</abstract><cop>England</cop><pmid>11955023</pmid><doi>10.1006/jmbi.2002.5444</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2002-04, Vol.317 (5), p.765-788 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_18310466 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | a-factor receptors a-mating pheromone receptor Alleles Amino Acid Sequence Amino Acid Substitution - genetics Cell Membrane - metabolism Databases, Genetic Hydrophobic and Hydrophilic Interactions Models, Molecular Molecular Sequence Data Mutagenesis, Site-Directed mutagenic mapping Mutation - genetics Protein Conformation Receptors, Cell Surface - chemistry Receptors, Cell Surface - genetics Receptors, Mating Factor Receptors, Peptide - chemistry Receptors, Peptide - genetics Receptors, Peptide - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - genetics STE2 gene Structure-Activity Relationship Transcription Factors |
title | Mutagenic mapping of helical structures in the transmembrane segments of the yeast alpha-factor receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutagenic%20mapping%20of%20helical%20structures%20in%20the%20transmembrane%20segments%20of%20the%20yeast%20alpha-factor%20receptor&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Martin,%20Negin%20P&rft.date=2002-04-12&rft.volume=317&rft.issue=5&rft.spage=765&rft.epage=788&rft.pages=765-788&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1006/jmbi.2002.5444&rft_dat=%3Cproquest_pubme%3E18310466%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18310466&rft_id=info:pmid/11955023&rfr_iscdi=true |