CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast

Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time‐consuming using traditional methods. With multiplex engineering tools, these tasks ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2016-12, Vol.231 (12), p.2563-2569
Hauptverfasser: Walter, Jessica M., Chandran, Sunil S., Horwitz, Andrew A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2569
container_issue 12
container_start_page 2563
container_title Journal of cellular physiology
container_volume 231
creator Walter, Jessica M.
Chandran, Sunil S.
Horwitz, Andrew A.
description Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time‐consuming using traditional methods. With multiplex engineering tools, these tasks can be completed in a single step, typically achieving up to sixfold compression in strain engineering timelines. To capitalize on this potential, a variety of yeast CRISPR‐Cas methods have been developed, differing largely in how the guide RNA (gRNA) reagents that direct the Cas9 nuclease are delivered. However, in nearly all reported protocols, the time savings of multiplexing is offset by multiple days of cloning to prepare the required reagents. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering in yeast. J. Cell. Physiol. 231: 2563–2569, 2016. © 2016 Wiley Periodicals, Inc. Installing complex biosynthetic pathways and combining point mutations in yeast are tedious and time‐consuming using traditional methods. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering.
doi_str_mv 10.1002/jcp.25375
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827932495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1813900034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4245-5782398a6e2e24bc02796a78fc39cb3fb8ff107fe3d331747c0d33657d52be8c3</originalsourceid><addsrcrecordid>eNqN0ctu1DAUBmALUdGhsOAFUCQ27cKtr3HMbhR61RRGnSIKG8vxnFSe5jLEE9F5-zpN2wUSEitb9nd-yf4R-kDJISWEHa3c-pBJruQrNKFEKyxSyV6jSbyjWEtBd9HbEFaEEK05f4N2Wao1ZUJM0E1-db6YX-HcBjwNwYcNLJPLvtr4dQX3vrlN9vPp5cHnZOHreJIsbA34i92OBs9a14fkuLn1DUA3cN8kP8GGzTu0U9oqwPundQ99Pzm-zs_w7NvpeT6dYSeYkFiqjHGd2RQYMFE4wpROrcpKx7UreFlkZUmJKoEvOadKKEfiJpVqKVkBmeN7aH_MXXft7x7CxtQ-OKgq20DbB0OzmMiZ0PI_KOU6fhIXkX76i67avmviQwbFtNDqMfBgVK5rQ-igNOvO17bbGkrM0IyJzZjHZqL9-JTYFzUsX-RzFREcjeCPr2D77yRzkc-fI_E4MbR2_zJhuzuTqkH--HpqxDW9OZnzX4byB3smovM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812949795</pqid></control><display><type>article</type><title>CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Walter, Jessica M. ; Chandran, Sunil S. ; Horwitz, Andrew A.</creator><creatorcontrib>Walter, Jessica M. ; Chandran, Sunil S. ; Horwitz, Andrew A.</creatorcontrib><description>Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time‐consuming using traditional methods. With multiplex engineering tools, these tasks can be completed in a single step, typically achieving up to sixfold compression in strain engineering timelines. To capitalize on this potential, a variety of yeast CRISPR‐Cas methods have been developed, differing largely in how the guide RNA (gRNA) reagents that direct the Cas9 nuclease are delivered. However, in nearly all reported protocols, the time savings of multiplexing is offset by multiple days of cloning to prepare the required reagents. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering in yeast. J. Cell. Physiol. 231: 2563–2569, 2016. © 2016 Wiley Periodicals, Inc. Installing complex biosynthetic pathways and combining point mutations in yeast are tedious and time‐consuming using traditional methods. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.25375</identifier><identifier>PMID: 26991244</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Biosynthetic Pathways - genetics ; Cloning ; CRISPR-Cas Systems - genetics ; Genetic Engineering ; Genetic Loci ; Reagents ; RNA, Guide, CRISPR-Cas Systems - genetics ; Saccharomyces cerevisiae - genetics ; Yeasts</subject><ispartof>Journal of cellular physiology, 2016-12, Vol.231 (12), p.2563-2569</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4245-5782398a6e2e24bc02796a78fc39cb3fb8ff107fe3d331747c0d33657d52be8c3</citedby><cites>FETCH-LOGICAL-c4245-5782398a6e2e24bc02796a78fc39cb3fb8ff107fe3d331747c0d33657d52be8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.25375$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.25375$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26991244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walter, Jessica M.</creatorcontrib><creatorcontrib>Chandran, Sunil S.</creatorcontrib><creatorcontrib>Horwitz, Andrew A.</creatorcontrib><title>CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time‐consuming using traditional methods. With multiplex engineering tools, these tasks can be completed in a single step, typically achieving up to sixfold compression in strain engineering timelines. To capitalize on this potential, a variety of yeast CRISPR‐Cas methods have been developed, differing largely in how the guide RNA (gRNA) reagents that direct the Cas9 nuclease are delivered. However, in nearly all reported protocols, the time savings of multiplexing is offset by multiple days of cloning to prepare the required reagents. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering in yeast. J. Cell. Physiol. 231: 2563–2569, 2016. © 2016 Wiley Periodicals, Inc. Installing complex biosynthetic pathways and combining point mutations in yeast are tedious and time‐consuming using traditional methods. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering.</description><subject>Biosynthetic Pathways - genetics</subject><subject>Cloning</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Genetic Engineering</subject><subject>Genetic Loci</subject><subject>Reagents</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Yeasts</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctu1DAUBmALUdGhsOAFUCQ27cKtr3HMbhR61RRGnSIKG8vxnFSe5jLEE9F5-zpN2wUSEitb9nd-yf4R-kDJISWEHa3c-pBJruQrNKFEKyxSyV6jSbyjWEtBd9HbEFaEEK05f4N2Wao1ZUJM0E1-db6YX-HcBjwNwYcNLJPLvtr4dQX3vrlN9vPp5cHnZOHreJIsbA34i92OBs9a14fkuLn1DUA3cN8kP8GGzTu0U9oqwPundQ99Pzm-zs_w7NvpeT6dYSeYkFiqjHGd2RQYMFE4wpROrcpKx7UreFlkZUmJKoEvOadKKEfiJpVqKVkBmeN7aH_MXXft7x7CxtQ-OKgq20DbB0OzmMiZ0PI_KOU6fhIXkX76i67avmviQwbFtNDqMfBgVK5rQ-igNOvO17bbGkrM0IyJzZjHZqL9-JTYFzUsX-RzFREcjeCPr2D77yRzkc-fI_E4MbR2_zJhuzuTqkH--HpqxDW9OZnzX4byB3smovM</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Walter, Jessica M.</creator><creator>Chandran, Sunil S.</creator><creator>Horwitz, Andrew A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>M7N</scope></search><sort><creationdate>201612</creationdate><title>CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast</title><author>Walter, Jessica M. ; Chandran, Sunil S. ; Horwitz, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4245-5782398a6e2e24bc02796a78fc39cb3fb8ff107fe3d331747c0d33657d52be8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biosynthetic Pathways - genetics</topic><topic>Cloning</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Genetic Engineering</topic><topic>Genetic Loci</topic><topic>Reagents</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walter, Jessica M.</creatorcontrib><creatorcontrib>Chandran, Sunil S.</creatorcontrib><creatorcontrib>Horwitz, Andrew A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walter, Jessica M.</au><au>Chandran, Sunil S.</au><au>Horwitz, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>2016-12</date><risdate>2016</risdate><volume>231</volume><issue>12</issue><spage>2563</spage><epage>2569</epage><pages>2563-2569</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time‐consuming using traditional methods. With multiplex engineering tools, these tasks can be completed in a single step, typically achieving up to sixfold compression in strain engineering timelines. To capitalize on this potential, a variety of yeast CRISPR‐Cas methods have been developed, differing largely in how the guide RNA (gRNA) reagents that direct the Cas9 nuclease are delivered. However, in nearly all reported protocols, the time savings of multiplexing is offset by multiple days of cloning to prepare the required reagents. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering in yeast. J. Cell. Physiol. 231: 2563–2569, 2016. © 2016 Wiley Periodicals, Inc. Installing complex biosynthetic pathways and combining point mutations in yeast are tedious and time‐consuming using traditional methods. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26991244</pmid><doi>10.1002/jcp.25375</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2016-12, Vol.231 (12), p.2563-2569
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_1827932495
source MEDLINE; Wiley Journals
subjects Biosynthetic Pathways - genetics
Cloning
CRISPR-Cas Systems - genetics
Genetic Engineering
Genetic Loci
Reagents
RNA, Guide, CRISPR-Cas Systems - genetics
Saccharomyces cerevisiae - genetics
Yeasts
title CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR-Cas-Assisted%20Multiplexing%20(CAM):%20Simple%20Same-Day%20Multi-Locus%20Engineering%20in%20Yeast&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Walter,%20Jessica%20M.&rft.date=2016-12&rft.volume=231&rft.issue=12&rft.spage=2563&rft.epage=2569&rft.pages=2563-2569&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.25375&rft_dat=%3Cproquest_cross%3E1813900034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812949795&rft_id=info:pmid/26991244&rfr_iscdi=true