CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast
Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time‐consuming using traditional methods. With multiplex engineering tools, these tasks ca...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2016-12, Vol.231 (12), p.2563-2569 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2569 |
---|---|
container_issue | 12 |
container_start_page | 2563 |
container_title | Journal of cellular physiology |
container_volume | 231 |
creator | Walter, Jessica M. Chandran, Sunil S. Horwitz, Andrew A. |
description | Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time‐consuming using traditional methods. With multiplex engineering tools, these tasks can be completed in a single step, typically achieving up to sixfold compression in strain engineering timelines. To capitalize on this potential, a variety of yeast CRISPR‐Cas methods have been developed, differing largely in how the guide RNA (gRNA) reagents that direct the Cas9 nuclease are delivered. However, in nearly all reported protocols, the time savings of multiplexing is offset by multiple days of cloning to prepare the required reagents. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering in yeast. J. Cell. Physiol. 231: 2563–2569, 2016. © 2016 Wiley Periodicals, Inc.
Installing complex biosynthetic pathways and combining point mutations in yeast are tedious and time‐consuming using traditional methods. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering. |
doi_str_mv | 10.1002/jcp.25375 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827932495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1813900034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4245-5782398a6e2e24bc02796a78fc39cb3fb8ff107fe3d331747c0d33657d52be8c3</originalsourceid><addsrcrecordid>eNqN0ctu1DAUBmALUdGhsOAFUCQ27cKtr3HMbhR61RRGnSIKG8vxnFSe5jLEE9F5-zpN2wUSEitb9nd-yf4R-kDJISWEHa3c-pBJruQrNKFEKyxSyV6jSbyjWEtBd9HbEFaEEK05f4N2Wao1ZUJM0E1-db6YX-HcBjwNwYcNLJPLvtr4dQX3vrlN9vPp5cHnZOHreJIsbA34i92OBs9a14fkuLn1DUA3cN8kP8GGzTu0U9oqwPundQ99Pzm-zs_w7NvpeT6dYSeYkFiqjHGd2RQYMFE4wpROrcpKx7UreFlkZUmJKoEvOadKKEfiJpVqKVkBmeN7aH_MXXft7x7CxtQ-OKgq20DbB0OzmMiZ0PI_KOU6fhIXkX76i67avmviQwbFtNDqMfBgVK5rQ-igNOvO17bbGkrM0IyJzZjHZqL9-JTYFzUsX-RzFREcjeCPr2D77yRzkc-fI_E4MbR2_zJhuzuTqkH--HpqxDW9OZnzX4byB3smovM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812949795</pqid></control><display><type>article</type><title>CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Walter, Jessica M. ; Chandran, Sunil S. ; Horwitz, Andrew A.</creator><creatorcontrib>Walter, Jessica M. ; Chandran, Sunil S. ; Horwitz, Andrew A.</creatorcontrib><description>Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time‐consuming using traditional methods. With multiplex engineering tools, these tasks can be completed in a single step, typically achieving up to sixfold compression in strain engineering timelines. To capitalize on this potential, a variety of yeast CRISPR‐Cas methods have been developed, differing largely in how the guide RNA (gRNA) reagents that direct the Cas9 nuclease are delivered. However, in nearly all reported protocols, the time savings of multiplexing is offset by multiple days of cloning to prepare the required reagents. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering in yeast. J. Cell. Physiol. 231: 2563–2569, 2016. © 2016 Wiley Periodicals, Inc.
Installing complex biosynthetic pathways and combining point mutations in yeast are tedious and time‐consuming using traditional methods. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.25375</identifier><identifier>PMID: 26991244</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Biosynthetic Pathways - genetics ; Cloning ; CRISPR-Cas Systems - genetics ; Genetic Engineering ; Genetic Loci ; Reagents ; RNA, Guide, CRISPR-Cas Systems - genetics ; Saccharomyces cerevisiae - genetics ; Yeasts</subject><ispartof>Journal of cellular physiology, 2016-12, Vol.231 (12), p.2563-2569</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4245-5782398a6e2e24bc02796a78fc39cb3fb8ff107fe3d331747c0d33657d52be8c3</citedby><cites>FETCH-LOGICAL-c4245-5782398a6e2e24bc02796a78fc39cb3fb8ff107fe3d331747c0d33657d52be8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.25375$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.25375$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26991244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walter, Jessica M.</creatorcontrib><creatorcontrib>Chandran, Sunil S.</creatorcontrib><creatorcontrib>Horwitz, Andrew A.</creatorcontrib><title>CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time‐consuming using traditional methods. With multiplex engineering tools, these tasks can be completed in a single step, typically achieving up to sixfold compression in strain engineering timelines. To capitalize on this potential, a variety of yeast CRISPR‐Cas methods have been developed, differing largely in how the guide RNA (gRNA) reagents that direct the Cas9 nuclease are delivered. However, in nearly all reported protocols, the time savings of multiplexing is offset by multiple days of cloning to prepare the required reagents. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering in yeast. J. Cell. Physiol. 231: 2563–2569, 2016. © 2016 Wiley Periodicals, Inc.
Installing complex biosynthetic pathways and combining point mutations in yeast are tedious and time‐consuming using traditional methods. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering.</description><subject>Biosynthetic Pathways - genetics</subject><subject>Cloning</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Genetic Engineering</subject><subject>Genetic Loci</subject><subject>Reagents</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Yeasts</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctu1DAUBmALUdGhsOAFUCQ27cKtr3HMbhR61RRGnSIKG8vxnFSe5jLEE9F5-zpN2wUSEitb9nd-yf4R-kDJISWEHa3c-pBJruQrNKFEKyxSyV6jSbyjWEtBd9HbEFaEEK05f4N2Wao1ZUJM0E1-db6YX-HcBjwNwYcNLJPLvtr4dQX3vrlN9vPp5cHnZOHreJIsbA34i92OBs9a14fkuLn1DUA3cN8kP8GGzTu0U9oqwPundQ99Pzm-zs_w7NvpeT6dYSeYkFiqjHGd2RQYMFE4wpROrcpKx7UreFlkZUmJKoEvOadKKEfiJpVqKVkBmeN7aH_MXXft7x7CxtQ-OKgq20DbB0OzmMiZ0PI_KOU6fhIXkX76i67avmviQwbFtNDqMfBgVK5rQ-igNOvO17bbGkrM0IyJzZjHZqL9-JTYFzUsX-RzFREcjeCPr2D77yRzkc-fI_E4MbR2_zJhuzuTqkH--HpqxDW9OZnzX4byB3smovM</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Walter, Jessica M.</creator><creator>Chandran, Sunil S.</creator><creator>Horwitz, Andrew A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>M7N</scope></search><sort><creationdate>201612</creationdate><title>CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast</title><author>Walter, Jessica M. ; Chandran, Sunil S. ; Horwitz, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4245-5782398a6e2e24bc02796a78fc39cb3fb8ff107fe3d331747c0d33657d52be8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biosynthetic Pathways - genetics</topic><topic>Cloning</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Genetic Engineering</topic><topic>Genetic Loci</topic><topic>Reagents</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walter, Jessica M.</creatorcontrib><creatorcontrib>Chandran, Sunil S.</creatorcontrib><creatorcontrib>Horwitz, Andrew A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walter, Jessica M.</au><au>Chandran, Sunil S.</au><au>Horwitz, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>2016-12</date><risdate>2016</risdate><volume>231</volume><issue>12</issue><spage>2563</spage><epage>2569</epage><pages>2563-2569</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time‐consuming using traditional methods. With multiplex engineering tools, these tasks can be completed in a single step, typically achieving up to sixfold compression in strain engineering timelines. To capitalize on this potential, a variety of yeast CRISPR‐Cas methods have been developed, differing largely in how the guide RNA (gRNA) reagents that direct the Cas9 nuclease are delivered. However, in nearly all reported protocols, the time savings of multiplexing is offset by multiple days of cloning to prepare the required reagents. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering in yeast. J. Cell. Physiol. 231: 2563–2569, 2016. © 2016 Wiley Periodicals, Inc.
Installing complex biosynthetic pathways and combining point mutations in yeast are tedious and time‐consuming using traditional methods. Here, we discuss the advantages and opportunities of CRISPR‐Cas‐assisted multiplexing (CAM), a same‐day, cloning‐free method for multi‐locus engineering.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26991244</pmid><doi>10.1002/jcp.25375</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2016-12, Vol.231 (12), p.2563-2569 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_1827932495 |
source | MEDLINE; Wiley Journals |
subjects | Biosynthetic Pathways - genetics Cloning CRISPR-Cas Systems - genetics Genetic Engineering Genetic Loci Reagents RNA, Guide, CRISPR-Cas Systems - genetics Saccharomyces cerevisiae - genetics Yeasts |
title | CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR-Cas-Assisted%20Multiplexing%20(CAM):%20Simple%20Same-Day%20Multi-Locus%20Engineering%20in%20Yeast&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Walter,%20Jessica%20M.&rft.date=2016-12&rft.volume=231&rft.issue=12&rft.spage=2563&rft.epage=2569&rft.pages=2563-2569&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.25375&rft_dat=%3Cproquest_cross%3E1813900034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812949795&rft_id=info:pmid/26991244&rfr_iscdi=true |