Development of Engineered T Cells Expressing a Chimeric CD16-CD3ζ Receptor to Improve the Clinical Efficacy of Mogamulizumab Therapy Against Adult T-Cell Leukemia

Mogamulizumab (Mog), a humanized anti-CC chemokine receptor 4 (CCR4) mAb that mediates antibody-dependent cellular cytotoxicity (ADCC) using FcγR IIIa (CD16)-expressing effector cells, has recently been approved for treatment of CCR4-positive adult T-cell leukemia (ATL) in Japan. However, Mog failur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2016-09, Vol.22 (17), p.4405-4416
Hauptverfasser: Tanaka, Hiroki, Fujiwara, Hiroshi, Ochi, Fumihiro, Tanimoto, Kazushi, Casey, Nicholas, Okamoto, Sachiko, Mineno, Junichi, Kuzushima, Kiyotaka, Shiku, Hiroshi, Sugiyama, Takashi, Barrett, A John, Yasukawa, Masaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4416
container_issue 17
container_start_page 4405
container_title Clinical cancer research
container_volume 22
creator Tanaka, Hiroki
Fujiwara, Hiroshi
Ochi, Fumihiro
Tanimoto, Kazushi
Casey, Nicholas
Okamoto, Sachiko
Mineno, Junichi
Kuzushima, Kiyotaka
Shiku, Hiroshi
Sugiyama, Takashi
Barrett, A John
Yasukawa, Masaki
description Mogamulizumab (Mog), a humanized anti-CC chemokine receptor 4 (CCR4) mAb that mediates antibody-dependent cellular cytotoxicity (ADCC) using FcγR IIIa (CD16)-expressing effector cells, has recently been approved for treatment of CCR4-positive adult T-cell leukemia (ATL) in Japan. However, Mog failure has sometimes been observed in patients who have accompanying chemotherapy-associated lymphocytopenia. In this study, we examined whether adoptive transfer of artificial ADCC effector cells combined with Mog would overcome this drawback. We lentivirally gene-modified peripheral blood T cells from healthy volunteers and ATL patients expressing the affinity-increased chimeric CD16-CD3ζ receptor (cCD16ζ-T cells). Subsequently, we examined the ADCC effect mediated by those cCD16ζ-T cells in the presence of Mog against ATL tumor cells both in vitro and in vivo cCD16ζ-T cells derived from healthy donors killed in vitro Mog-opsonized ATL cell line cells (n = 7) and primary ATL cells (n = 4) depending on both the number of effector cells and the dose of the antibody. cCD16ζ-T cells generated from ATL patients (n = 3) also exerted cytocidal activity in vitro against Mog-opsonized autologous ATL cells. Using both intravenously disseminated model (n = 5) and subcutaneously inoculated model (n = 4), coadministration of Mog and human cCD16ζ-T cells successfully suppressed tumor growth in xenografted immunodeficient mice, and significantly prolonged their survival (P < 0.01 and P = 0.02, respectively). These data strongly suggest clinical feasibility of the novel combined adoptive immunotherapy using cCD16ζ-T cells and Mog for treatment of aggressive ATL, particularly in patients who are ineligible for allogeneic hematopoietic stem cell transplantation. Clin Cancer Res; 22(17); 4405-16. ©2016 AACR.
doi_str_mv 10.1158/1078-0432.CCR-15-2714
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827924474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816633459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-d89805f01b7e1649e63627e5e4fc108f62b397bddeb7b2744431c7110639f7073</originalsourceid><addsrcrecordid>eNqNkU1u1EAQhVsIRELgCKBasnHo6h-3vRx5Bog0CCka1q22XZ5p8B_ddsRwHe7AMTgTtpKwZvVq8V69Kn2MvUZ-jaizd8hNlnAlxXVR3CaoE2FQPWGXqLVJpEj102V-9FywFzF-5RwVcvWcXQjDc1Q8u2S_tnRH7TB21E8wNLDrj74nClTDAQpq2wi7H2OgGH1_BAfFyXcUfAXFFtOk2Mo_v-GWKhqnIcA0wE03huGOYDoRFK3vfeVa2DXNotV5Lfg0HF03t_7n3LkSDicKbjzD5uh8HyfY1HM7wSFZm2FP8zfqvHvJnjWujfTqQa_Yl_e7Q_Ex2X_-cFNs9kmljJySOsszrhuOpSFMVU6pTIUhTaqpkGdNKkqZm7KuqTSlMEopiZVB5KnMG8ONvGJv7_cuL3yfKU6287FaLnE9DXO0mAmTC6WM-g8rpqmUSueLVd9bqzDEGKixY_CdC2eL3K4o7YrJrpjsgtKitivKJffmoWIuO6r_pR7Zyb91LJno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816633459</pqid></control><display><type>article</type><title>Development of Engineered T Cells Expressing a Chimeric CD16-CD3ζ Receptor to Improve the Clinical Efficacy of Mogamulizumab Therapy Against Adult T-Cell Leukemia</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Association for Cancer Research</source><source>Alma/SFX Local Collection</source><creator>Tanaka, Hiroki ; Fujiwara, Hiroshi ; Ochi, Fumihiro ; Tanimoto, Kazushi ; Casey, Nicholas ; Okamoto, Sachiko ; Mineno, Junichi ; Kuzushima, Kiyotaka ; Shiku, Hiroshi ; Sugiyama, Takashi ; Barrett, A John ; Yasukawa, Masaki</creator><creatorcontrib>Tanaka, Hiroki ; Fujiwara, Hiroshi ; Ochi, Fumihiro ; Tanimoto, Kazushi ; Casey, Nicholas ; Okamoto, Sachiko ; Mineno, Junichi ; Kuzushima, Kiyotaka ; Shiku, Hiroshi ; Sugiyama, Takashi ; Barrett, A John ; Yasukawa, Masaki</creatorcontrib><description>Mogamulizumab (Mog), a humanized anti-CC chemokine receptor 4 (CCR4) mAb that mediates antibody-dependent cellular cytotoxicity (ADCC) using FcγR IIIa (CD16)-expressing effector cells, has recently been approved for treatment of CCR4-positive adult T-cell leukemia (ATL) in Japan. However, Mog failure has sometimes been observed in patients who have accompanying chemotherapy-associated lymphocytopenia. In this study, we examined whether adoptive transfer of artificial ADCC effector cells combined with Mog would overcome this drawback. We lentivirally gene-modified peripheral blood T cells from healthy volunteers and ATL patients expressing the affinity-increased chimeric CD16-CD3ζ receptor (cCD16ζ-T cells). Subsequently, we examined the ADCC effect mediated by those cCD16ζ-T cells in the presence of Mog against ATL tumor cells both in vitro and in vivo cCD16ζ-T cells derived from healthy donors killed in vitro Mog-opsonized ATL cell line cells (n = 7) and primary ATL cells (n = 4) depending on both the number of effector cells and the dose of the antibody. cCD16ζ-T cells generated from ATL patients (n = 3) also exerted cytocidal activity in vitro against Mog-opsonized autologous ATL cells. Using both intravenously disseminated model (n = 5) and subcutaneously inoculated model (n = 4), coadministration of Mog and human cCD16ζ-T cells successfully suppressed tumor growth in xenografted immunodeficient mice, and significantly prolonged their survival (P &lt; 0.01 and P = 0.02, respectively). These data strongly suggest clinical feasibility of the novel combined adoptive immunotherapy using cCD16ζ-T cells and Mog for treatment of aggressive ATL, particularly in patients who are ineligible for allogeneic hematopoietic stem cell transplantation. Clin Cancer Res; 22(17); 4405-16. ©2016 AACR.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-15-2714</identifier><identifier>PMID: 27091408</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Antibodies, Monoclonal, Humanized - pharmacology ; Antibody-Dependent Cell Cytotoxicity - immunology ; Antineoplastic Agents, Immunological - pharmacology ; CD3 Complex - genetics ; CD3 Complex - metabolism ; Cell Line, Tumor ; Combined Modality Therapy ; Disease Models, Animal ; Female ; Gene Expression ; Genetic Vectors - genetics ; Humans ; Immunotherapy, Adoptive ; Killer Cells, Natural - immunology ; Killer Cells, Natural - metabolism ; Lentivirus - genetics ; Leukemia-Lymphoma, Adult T-Cell - immunology ; Leukemia-Lymphoma, Adult T-Cell - metabolism ; Leukemia-Lymphoma, Adult T-Cell - pathology ; Leukemia-Lymphoma, Adult T-Cell - therapy ; Mice ; Receptors, CCR4 - genetics ; Receptors, CCR4 - metabolism ; Receptors, IgG - genetics ; Receptors, IgG - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; T-Cell Antigen Receptor Specificity - immunology ; T-Lymphocytes - immunology ; T-Lymphocytes - metabolism ; Transduction, Genetic ; Xenograft Model Antitumor Assays</subject><ispartof>Clinical cancer research, 2016-09, Vol.22 (17), p.4405-4416</ispartof><rights>2016 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-d89805f01b7e1649e63627e5e4fc108f62b397bddeb7b2744431c7110639f7073</citedby><cites>FETCH-LOGICAL-c473t-d89805f01b7e1649e63627e5e4fc108f62b397bddeb7b2744431c7110639f7073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,3345,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27091408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanaka, Hiroki</creatorcontrib><creatorcontrib>Fujiwara, Hiroshi</creatorcontrib><creatorcontrib>Ochi, Fumihiro</creatorcontrib><creatorcontrib>Tanimoto, Kazushi</creatorcontrib><creatorcontrib>Casey, Nicholas</creatorcontrib><creatorcontrib>Okamoto, Sachiko</creatorcontrib><creatorcontrib>Mineno, Junichi</creatorcontrib><creatorcontrib>Kuzushima, Kiyotaka</creatorcontrib><creatorcontrib>Shiku, Hiroshi</creatorcontrib><creatorcontrib>Sugiyama, Takashi</creatorcontrib><creatorcontrib>Barrett, A John</creatorcontrib><creatorcontrib>Yasukawa, Masaki</creatorcontrib><title>Development of Engineered T Cells Expressing a Chimeric CD16-CD3ζ Receptor to Improve the Clinical Efficacy of Mogamulizumab Therapy Against Adult T-Cell Leukemia</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>Mogamulizumab (Mog), a humanized anti-CC chemokine receptor 4 (CCR4) mAb that mediates antibody-dependent cellular cytotoxicity (ADCC) using FcγR IIIa (CD16)-expressing effector cells, has recently been approved for treatment of CCR4-positive adult T-cell leukemia (ATL) in Japan. However, Mog failure has sometimes been observed in patients who have accompanying chemotherapy-associated lymphocytopenia. In this study, we examined whether adoptive transfer of artificial ADCC effector cells combined with Mog would overcome this drawback. We lentivirally gene-modified peripheral blood T cells from healthy volunteers and ATL patients expressing the affinity-increased chimeric CD16-CD3ζ receptor (cCD16ζ-T cells). Subsequently, we examined the ADCC effect mediated by those cCD16ζ-T cells in the presence of Mog against ATL tumor cells both in vitro and in vivo cCD16ζ-T cells derived from healthy donors killed in vitro Mog-opsonized ATL cell line cells (n = 7) and primary ATL cells (n = 4) depending on both the number of effector cells and the dose of the antibody. cCD16ζ-T cells generated from ATL patients (n = 3) also exerted cytocidal activity in vitro against Mog-opsonized autologous ATL cells. Using both intravenously disseminated model (n = 5) and subcutaneously inoculated model (n = 4), coadministration of Mog and human cCD16ζ-T cells successfully suppressed tumor growth in xenografted immunodeficient mice, and significantly prolonged their survival (P &lt; 0.01 and P = 0.02, respectively). These data strongly suggest clinical feasibility of the novel combined adoptive immunotherapy using cCD16ζ-T cells and Mog for treatment of aggressive ATL, particularly in patients who are ineligible for allogeneic hematopoietic stem cell transplantation. Clin Cancer Res; 22(17); 4405-16. ©2016 AACR.</description><subject>Animals</subject><subject>Antibodies, Monoclonal, Humanized - pharmacology</subject><subject>Antibody-Dependent Cell Cytotoxicity - immunology</subject><subject>Antineoplastic Agents, Immunological - pharmacology</subject><subject>CD3 Complex - genetics</subject><subject>CD3 Complex - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Combined Modality Therapy</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Genetic Vectors - genetics</subject><subject>Humans</subject><subject>Immunotherapy, Adoptive</subject><subject>Killer Cells, Natural - immunology</subject><subject>Killer Cells, Natural - metabolism</subject><subject>Lentivirus - genetics</subject><subject>Leukemia-Lymphoma, Adult T-Cell - immunology</subject><subject>Leukemia-Lymphoma, Adult T-Cell - metabolism</subject><subject>Leukemia-Lymphoma, Adult T-Cell - pathology</subject><subject>Leukemia-Lymphoma, Adult T-Cell - therapy</subject><subject>Mice</subject><subject>Receptors, CCR4 - genetics</subject><subject>Receptors, CCR4 - metabolism</subject><subject>Receptors, IgG - genetics</subject><subject>Receptors, IgG - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>T-Cell Antigen Receptor Specificity - immunology</subject><subject>T-Lymphocytes - immunology</subject><subject>T-Lymphocytes - metabolism</subject><subject>Transduction, Genetic</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1u1EAQhVsIRELgCKBasnHo6h-3vRx5Bog0CCka1q22XZ5p8B_ddsRwHe7AMTgTtpKwZvVq8V69Kn2MvUZ-jaizd8hNlnAlxXVR3CaoE2FQPWGXqLVJpEj102V-9FywFzF-5RwVcvWcXQjDc1Q8u2S_tnRH7TB21E8wNLDrj74nClTDAQpq2wi7H2OgGH1_BAfFyXcUfAXFFtOk2Mo_v-GWKhqnIcA0wE03huGOYDoRFK3vfeVa2DXNotV5Lfg0HF03t_7n3LkSDicKbjzD5uh8HyfY1HM7wSFZm2FP8zfqvHvJnjWujfTqQa_Yl_e7Q_Ex2X_-cFNs9kmljJySOsszrhuOpSFMVU6pTIUhTaqpkGdNKkqZm7KuqTSlMEopiZVB5KnMG8ONvGJv7_cuL3yfKU6287FaLnE9DXO0mAmTC6WM-g8rpqmUSueLVd9bqzDEGKixY_CdC2eL3K4o7YrJrpjsgtKitivKJffmoWIuO6r_pR7Zyb91LJno</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Tanaka, Hiroki</creator><creator>Fujiwara, Hiroshi</creator><creator>Ochi, Fumihiro</creator><creator>Tanimoto, Kazushi</creator><creator>Casey, Nicholas</creator><creator>Okamoto, Sachiko</creator><creator>Mineno, Junichi</creator><creator>Kuzushima, Kiyotaka</creator><creator>Shiku, Hiroshi</creator><creator>Sugiyama, Takashi</creator><creator>Barrett, A John</creator><creator>Yasukawa, Masaki</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>20160901</creationdate><title>Development of Engineered T Cells Expressing a Chimeric CD16-CD3ζ Receptor to Improve the Clinical Efficacy of Mogamulizumab Therapy Against Adult T-Cell Leukemia</title><author>Tanaka, Hiroki ; Fujiwara, Hiroshi ; Ochi, Fumihiro ; Tanimoto, Kazushi ; Casey, Nicholas ; Okamoto, Sachiko ; Mineno, Junichi ; Kuzushima, Kiyotaka ; Shiku, Hiroshi ; Sugiyama, Takashi ; Barrett, A John ; Yasukawa, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-d89805f01b7e1649e63627e5e4fc108f62b397bddeb7b2744431c7110639f7073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal, Humanized - pharmacology</topic><topic>Antibody-Dependent Cell Cytotoxicity - immunology</topic><topic>Antineoplastic Agents, Immunological - pharmacology</topic><topic>CD3 Complex - genetics</topic><topic>CD3 Complex - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Combined Modality Therapy</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Genetic Vectors - genetics</topic><topic>Humans</topic><topic>Immunotherapy, Adoptive</topic><topic>Killer Cells, Natural - immunology</topic><topic>Killer Cells, Natural - metabolism</topic><topic>Lentivirus - genetics</topic><topic>Leukemia-Lymphoma, Adult T-Cell - immunology</topic><topic>Leukemia-Lymphoma, Adult T-Cell - metabolism</topic><topic>Leukemia-Lymphoma, Adult T-Cell - pathology</topic><topic>Leukemia-Lymphoma, Adult T-Cell - therapy</topic><topic>Mice</topic><topic>Receptors, CCR4 - genetics</topic><topic>Receptors, CCR4 - metabolism</topic><topic>Receptors, IgG - genetics</topic><topic>Receptors, IgG - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>T-Cell Antigen Receptor Specificity - immunology</topic><topic>T-Lymphocytes - immunology</topic><topic>T-Lymphocytes - metabolism</topic><topic>Transduction, Genetic</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Hiroki</creatorcontrib><creatorcontrib>Fujiwara, Hiroshi</creatorcontrib><creatorcontrib>Ochi, Fumihiro</creatorcontrib><creatorcontrib>Tanimoto, Kazushi</creatorcontrib><creatorcontrib>Casey, Nicholas</creatorcontrib><creatorcontrib>Okamoto, Sachiko</creatorcontrib><creatorcontrib>Mineno, Junichi</creatorcontrib><creatorcontrib>Kuzushima, Kiyotaka</creatorcontrib><creatorcontrib>Shiku, Hiroshi</creatorcontrib><creatorcontrib>Sugiyama, Takashi</creatorcontrib><creatorcontrib>Barrett, A John</creatorcontrib><creatorcontrib>Yasukawa, Masaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Hiroki</au><au>Fujiwara, Hiroshi</au><au>Ochi, Fumihiro</au><au>Tanimoto, Kazushi</au><au>Casey, Nicholas</au><au>Okamoto, Sachiko</au><au>Mineno, Junichi</au><au>Kuzushima, Kiyotaka</au><au>Shiku, Hiroshi</au><au>Sugiyama, Takashi</au><au>Barrett, A John</au><au>Yasukawa, Masaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Engineered T Cells Expressing a Chimeric CD16-CD3ζ Receptor to Improve the Clinical Efficacy of Mogamulizumab Therapy Against Adult T-Cell Leukemia</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>22</volume><issue>17</issue><spage>4405</spage><epage>4416</epage><pages>4405-4416</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>Mogamulizumab (Mog), a humanized anti-CC chemokine receptor 4 (CCR4) mAb that mediates antibody-dependent cellular cytotoxicity (ADCC) using FcγR IIIa (CD16)-expressing effector cells, has recently been approved for treatment of CCR4-positive adult T-cell leukemia (ATL) in Japan. However, Mog failure has sometimes been observed in patients who have accompanying chemotherapy-associated lymphocytopenia. In this study, we examined whether adoptive transfer of artificial ADCC effector cells combined with Mog would overcome this drawback. We lentivirally gene-modified peripheral blood T cells from healthy volunteers and ATL patients expressing the affinity-increased chimeric CD16-CD3ζ receptor (cCD16ζ-T cells). Subsequently, we examined the ADCC effect mediated by those cCD16ζ-T cells in the presence of Mog against ATL tumor cells both in vitro and in vivo cCD16ζ-T cells derived from healthy donors killed in vitro Mog-opsonized ATL cell line cells (n = 7) and primary ATL cells (n = 4) depending on both the number of effector cells and the dose of the antibody. cCD16ζ-T cells generated from ATL patients (n = 3) also exerted cytocidal activity in vitro against Mog-opsonized autologous ATL cells. Using both intravenously disseminated model (n = 5) and subcutaneously inoculated model (n = 4), coadministration of Mog and human cCD16ζ-T cells successfully suppressed tumor growth in xenografted immunodeficient mice, and significantly prolonged their survival (P &lt; 0.01 and P = 0.02, respectively). These data strongly suggest clinical feasibility of the novel combined adoptive immunotherapy using cCD16ζ-T cells and Mog for treatment of aggressive ATL, particularly in patients who are ineligible for allogeneic hematopoietic stem cell transplantation. Clin Cancer Res; 22(17); 4405-16. ©2016 AACR.</abstract><cop>United States</cop><pmid>27091408</pmid><doi>10.1158/1078-0432.CCR-15-2714</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2016-09, Vol.22 (17), p.4405-4416
issn 1078-0432
1557-3265
language eng
recordid cdi_proquest_miscellaneous_1827924474
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Association for Cancer Research; Alma/SFX Local Collection
subjects Animals
Antibodies, Monoclonal, Humanized - pharmacology
Antibody-Dependent Cell Cytotoxicity - immunology
Antineoplastic Agents, Immunological - pharmacology
CD3 Complex - genetics
CD3 Complex - metabolism
Cell Line, Tumor
Combined Modality Therapy
Disease Models, Animal
Female
Gene Expression
Genetic Vectors - genetics
Humans
Immunotherapy, Adoptive
Killer Cells, Natural - immunology
Killer Cells, Natural - metabolism
Lentivirus - genetics
Leukemia-Lymphoma, Adult T-Cell - immunology
Leukemia-Lymphoma, Adult T-Cell - metabolism
Leukemia-Lymphoma, Adult T-Cell - pathology
Leukemia-Lymphoma, Adult T-Cell - therapy
Mice
Receptors, CCR4 - genetics
Receptors, CCR4 - metabolism
Receptors, IgG - genetics
Receptors, IgG - metabolism
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
T-Cell Antigen Receptor Specificity - immunology
T-Lymphocytes - immunology
T-Lymphocytes - metabolism
Transduction, Genetic
Xenograft Model Antitumor Assays
title Development of Engineered T Cells Expressing a Chimeric CD16-CD3ζ Receptor to Improve the Clinical Efficacy of Mogamulizumab Therapy Against Adult T-Cell Leukemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Engineered%20T%20Cells%20Expressing%20a%20Chimeric%20CD16-CD3%CE%B6%20Receptor%20to%20Improve%20the%20Clinical%20Efficacy%20of%20Mogamulizumab%20Therapy%20Against%20Adult%20T-Cell%20Leukemia&rft.jtitle=Clinical%20cancer%20research&rft.au=Tanaka,%20Hiroki&rft.date=2016-09-01&rft.volume=22&rft.issue=17&rft.spage=4405&rft.epage=4416&rft.pages=4405-4416&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-15-2714&rft_dat=%3Cproquest_cross%3E1816633459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816633459&rft_id=info:pmid/27091408&rfr_iscdi=true