Artificial Neural Networks for the analysis of spreadmooring configurations for floating production systems
ANN meta-models for preliminary design stages of FPS are presented.They analyze arbitrarily defined asymmetrical spread-mooring configurations.Performance assessed by application to a FPS for actual deepwater scenario.ANNs provide fairly accurate values for the parameters of the mooring response...
Gespeichert in:
Veröffentlicht in: | Applied ocean research 2016-09, Vol.59, p.254-264 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | |
container_start_page | 254 |
container_title | Applied ocean research |
container_volume | 59 |
creator | de Pina, Aline Aparecida Monteiro, Bruno da Fonseca Albrecht, Carl Horst de Lima, Beatriz Souza Leite Pires Jacob, Breno Pinheiro |
description | ANN meta-models for preliminary design stages of FPS are presented.They analyze arbitrarily defined asymmetrical spread-mooring configurations.Performance assessed by application to a FPS for actual deepwater scenario.ANNs provide fairly accurate values for the parameters of the mooring response.
This work presents the development of Artificial Neural Networks for the analysis of any arbitrarily defined spread-mooring configuration for floating production systems (FPS), considering a given scenario characterized by the water depth, metocean data, characteristics of the platform hull, and the riser layout. The methodology is applied to recent designs of deepwater semi-submersible platforms connected to a large number of risers with asymmetrical layout. In such cases, the design variables may include values for the azimuthal spacing and mooring radius varying along the corners of the platform, besides the pretension and material of the lines. The results of the case study indicated that, given any mooring configuration characterized by the combination of all these design variables, the ANNs provide fairly accurate values for the parameters of the response that are required for the design of mooring systems (typically platform offsets and line tensions). |
doi_str_mv | 10.1016/j.apor.2016.06.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827919969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141118716302073</els_id><sourcerecordid>1827919969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-c3d098f3b610d88cfcaac8a979a27c57a8ae0e525e87d0b72062a6840dea7d223</originalsourceid><addsrcrecordid>eNp9kMtOxCAUhonRxHH0BVx16aYV6LSFxM1k4i2Z6EbXhIHDyNiWCq1mnm7exSeRWtcmJ-fC-T8CP0KXBGcEk_J6l8nO-YzGPsMxCD5CM8IqnpJiwY_RDJMFSUk8OUVnIewwJpSVbIbape-tscrKOnmCwf-W_sv595AY55P-DRLZynofbEicSULnQervw6Fxztt2myjXGruNYG9dOzGmdnGKu847PahxkYR96KEJ5-jEyDrAxV-do9e725fVQ7p-vn9cLdepyvO8j1ljzky-KQnWjCmjpFRM8opLWqmikkwChoIWwCqNNxXFJZUlW2ANstKU5nN0Nd0bn_AxQOhFY4OCupYtuCEIwmjFCeclj1I6SZV3IXgwovO2kX4vCBajuWInRnPFaK7AMQiO0M0EQfzEpwUvgrLQKtDWg-qFdvY__AdDtYeP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827919969</pqid></control><display><type>article</type><title>Artificial Neural Networks for the analysis of spreadmooring configurations for floating production systems</title><source>Elsevier ScienceDirect Journals</source><creator>de Pina, Aline Aparecida ; Monteiro, Bruno da Fonseca ; Albrecht, Carl Horst ; de Lima, Beatriz Souza Leite Pires ; Jacob, Breno Pinheiro</creator><creatorcontrib>de Pina, Aline Aparecida ; Monteiro, Bruno da Fonseca ; Albrecht, Carl Horst ; de Lima, Beatriz Souza Leite Pires ; Jacob, Breno Pinheiro</creatorcontrib><description>ANN meta-models for preliminary design stages of FPS are presented.They analyze arbitrarily defined asymmetrical spread-mooring configurations.Performance assessed by application to a FPS for actual deepwater scenario.ANNs provide fairly accurate values for the parameters of the mooring response.
This work presents the development of Artificial Neural Networks for the analysis of any arbitrarily defined spread-mooring configuration for floating production systems (FPS), considering a given scenario characterized by the water depth, metocean data, characteristics of the platform hull, and the riser layout. The methodology is applied to recent designs of deepwater semi-submersible platforms connected to a large number of risers with asymmetrical layout. In such cases, the design variables may include values for the azimuthal spacing and mooring radius varying along the corners of the platform, besides the pretension and material of the lines. The results of the case study indicated that, given any mooring configuration characterized by the combination of all these design variables, the ANNs provide fairly accurate values for the parameters of the response that are required for the design of mooring systems (typically platform offsets and line tensions).</description><identifier>ISSN: 0141-1187</identifier><identifier>EISSN: 1879-1549</identifier><identifier>DOI: 10.1016/j.apor.2016.06.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial Neural Networks ; Floating production systems ; Marine ; Meta-models ; Mooring systems ; Surrogate models</subject><ispartof>Applied ocean research, 2016-09, Vol.59, p.254-264</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-c3d098f3b610d88cfcaac8a979a27c57a8ae0e525e87d0b72062a6840dea7d223</citedby><cites>FETCH-LOGICAL-c333t-c3d098f3b610d88cfcaac8a979a27c57a8ae0e525e87d0b72062a6840dea7d223</cites><orcidid>0000-0001-9446-1825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141118716302073$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>de Pina, Aline Aparecida</creatorcontrib><creatorcontrib>Monteiro, Bruno da Fonseca</creatorcontrib><creatorcontrib>Albrecht, Carl Horst</creatorcontrib><creatorcontrib>de Lima, Beatriz Souza Leite Pires</creatorcontrib><creatorcontrib>Jacob, Breno Pinheiro</creatorcontrib><title>Artificial Neural Networks for the analysis of spreadmooring configurations for floating production systems</title><title>Applied ocean research</title><description>ANN meta-models for preliminary design stages of FPS are presented.They analyze arbitrarily defined asymmetrical spread-mooring configurations.Performance assessed by application to a FPS for actual deepwater scenario.ANNs provide fairly accurate values for the parameters of the mooring response.
This work presents the development of Artificial Neural Networks for the analysis of any arbitrarily defined spread-mooring configuration for floating production systems (FPS), considering a given scenario characterized by the water depth, metocean data, characteristics of the platform hull, and the riser layout. The methodology is applied to recent designs of deepwater semi-submersible platforms connected to a large number of risers with asymmetrical layout. In such cases, the design variables may include values for the azimuthal spacing and mooring radius varying along the corners of the platform, besides the pretension and material of the lines. The results of the case study indicated that, given any mooring configuration characterized by the combination of all these design variables, the ANNs provide fairly accurate values for the parameters of the response that are required for the design of mooring systems (typically platform offsets and line tensions).</description><subject>Artificial Neural Networks</subject><subject>Floating production systems</subject><subject>Marine</subject><subject>Meta-models</subject><subject>Mooring systems</subject><subject>Surrogate models</subject><issn>0141-1187</issn><issn>1879-1549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOxCAUhonRxHH0BVx16aYV6LSFxM1k4i2Z6EbXhIHDyNiWCq1mnm7exSeRWtcmJ-fC-T8CP0KXBGcEk_J6l8nO-YzGPsMxCD5CM8IqnpJiwY_RDJMFSUk8OUVnIewwJpSVbIbape-tscrKOnmCwf-W_sv595AY55P-DRLZynofbEicSULnQervw6Fxztt2myjXGruNYG9dOzGmdnGKu847PahxkYR96KEJ5-jEyDrAxV-do9e725fVQ7p-vn9cLdepyvO8j1ljzky-KQnWjCmjpFRM8opLWqmikkwChoIWwCqNNxXFJZUlW2ANstKU5nN0Nd0bn_AxQOhFY4OCupYtuCEIwmjFCeclj1I6SZV3IXgwovO2kX4vCBajuWInRnPFaK7AMQiO0M0EQfzEpwUvgrLQKtDWg-qFdvY__AdDtYeP</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>de Pina, Aline Aparecida</creator><creator>Monteiro, Bruno da Fonseca</creator><creator>Albrecht, Carl Horst</creator><creator>de Lima, Beatriz Souza Leite Pires</creator><creator>Jacob, Breno Pinheiro</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-9446-1825</orcidid></search><sort><creationdate>201609</creationdate><title>Artificial Neural Networks for the analysis of spreadmooring configurations for floating production systems</title><author>de Pina, Aline Aparecida ; Monteiro, Bruno da Fonseca ; Albrecht, Carl Horst ; de Lima, Beatriz Souza Leite Pires ; Jacob, Breno Pinheiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-c3d098f3b610d88cfcaac8a979a27c57a8ae0e525e87d0b72062a6840dea7d223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial Neural Networks</topic><topic>Floating production systems</topic><topic>Marine</topic><topic>Meta-models</topic><topic>Mooring systems</topic><topic>Surrogate models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Pina, Aline Aparecida</creatorcontrib><creatorcontrib>Monteiro, Bruno da Fonseca</creatorcontrib><creatorcontrib>Albrecht, Carl Horst</creatorcontrib><creatorcontrib>de Lima, Beatriz Souza Leite Pires</creatorcontrib><creatorcontrib>Jacob, Breno Pinheiro</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Applied ocean research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Pina, Aline Aparecida</au><au>Monteiro, Bruno da Fonseca</au><au>Albrecht, Carl Horst</au><au>de Lima, Beatriz Souza Leite Pires</au><au>Jacob, Breno Pinheiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Networks for the analysis of spreadmooring configurations for floating production systems</atitle><jtitle>Applied ocean research</jtitle><date>2016-09</date><risdate>2016</risdate><volume>59</volume><spage>254</spage><epage>264</epage><pages>254-264</pages><issn>0141-1187</issn><eissn>1879-1549</eissn><abstract>ANN meta-models for preliminary design stages of FPS are presented.They analyze arbitrarily defined asymmetrical spread-mooring configurations.Performance assessed by application to a FPS for actual deepwater scenario.ANNs provide fairly accurate values for the parameters of the mooring response.
This work presents the development of Artificial Neural Networks for the analysis of any arbitrarily defined spread-mooring configuration for floating production systems (FPS), considering a given scenario characterized by the water depth, metocean data, characteristics of the platform hull, and the riser layout. The methodology is applied to recent designs of deepwater semi-submersible platforms connected to a large number of risers with asymmetrical layout. In such cases, the design variables may include values for the azimuthal spacing and mooring radius varying along the corners of the platform, besides the pretension and material of the lines. The results of the case study indicated that, given any mooring configuration characterized by the combination of all these design variables, the ANNs provide fairly accurate values for the parameters of the response that are required for the design of mooring systems (typically platform offsets and line tensions).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apor.2016.06.010</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9446-1825</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-1187 |
ispartof | Applied ocean research, 2016-09, Vol.59, p.254-264 |
issn | 0141-1187 1879-1549 |
language | eng |
recordid | cdi_proquest_miscellaneous_1827919969 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial Neural Networks Floating production systems Marine Meta-models Mooring systems Surrogate models |
title | Artificial Neural Networks for the analysis of spreadmooring configurations for floating production systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T02%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Networks%20for%20the%20analysis%20of%20spread%E2%BF%BFmooring%20configurations%20for%20floating%20production%20systems&rft.jtitle=Applied%20ocean%20research&rft.au=de%20Pina,%20Aline%20Aparecida&rft.date=2016-09&rft.volume=59&rft.spage=254&rft.epage=264&rft.pages=254-264&rft.issn=0141-1187&rft.eissn=1879-1549&rft_id=info:doi/10.1016/j.apor.2016.06.010&rft_dat=%3Cproquest_cross%3E1827919969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827919969&rft_id=info:pmid/&rft_els_id=S0141118716302073&rfr_iscdi=true |