Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences

Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding seq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics and molecular research 2015-12, Vol.14 (4), p.17511-17518
Hauptverfasser: Guo, Y C, Wang, H, Wu, H P, Zhang, M Q
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17518
container_issue 4
container_start_page 17511
container_title Genetics and molecular research
container_volume 14
creator Guo, Y C
Wang, H
Wu, H P
Zhang, M Q
description Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.
doi_str_mv 10.4238/2015.December.21.23
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827919578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760895832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-aaac80447679c1ed5ae66dc58b00ae509f345fed3a5be3c02c87d46a5c8f358e3</originalsourceid><addsrcrecordid>eNqFkUtPwzAQhC0EglL4BUjIRy4pfsSOc6xaXlKBC5wtx9kUoyQutiMEv54gWsSN085KMzsrfQidUTLLGVeXjFAxW4KFroIwY3TG-B6aUFnITEhF9v_oI3Qc4yshTOSKHKIjJgvFeCkmaHM_tMllna-HdojYtGsfXHrpcGUi1Nj3eN36yrTYhOQaZ90oGxdfcHw3ocOuT9C2bg19wn6TXOc-TXJjyjd4-TDH0Ftfu36NI7wN4wLxBB00po1wup1T9Hx99bS4zVaPN3eL-SqznPOUGWOsInleyKK0FGphQMraClURYkCQsuG5aKDmRlTALWFWFXUujbCq4UIBn6KLn7ub4MfqmHTnoh2fNT34IWqqWFHSUhTqf2shiSqF4my08h-rDT7GAI3eBNeZ8KEp0d9U9DcVvaOiGdWMj6nzbcFQdVD_ZnYY-BcXkIyy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760895832</pqid></control><display><type>article</type><title>Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Guo, Y C ; Wang, H ; Wu, H P ; Zhang, M Q</creator><creatorcontrib>Guo, Y C ; Wang, H ; Wu, H P ; Zhang, M Q</creatorcontrib><description>Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.</description><identifier>ISSN: 1676-5680</identifier><identifier>EISSN: 1676-5680</identifier><identifier>DOI: 10.4238/2015.December.21.23</identifier><identifier>PMID: 26782395</identifier><language>eng</language><publisher>Brazil</publisher><subject>Algorithms ; DNA - genetics ; Models, Theoretical</subject><ispartof>Genetics and molecular research, 2015-12, Vol.14 (4), p.17511-17518</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26782395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Y C</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Wu, H P</creatorcontrib><creatorcontrib>Zhang, M Q</creatorcontrib><title>Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences</title><title>Genetics and molecular research</title><addtitle>Genet Mol Res</addtitle><description>Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.</description><subject>Algorithms</subject><subject>DNA - genetics</subject><subject>Models, Theoretical</subject><issn>1676-5680</issn><issn>1676-5680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPwzAQhC0EglL4BUjIRy4pfsSOc6xaXlKBC5wtx9kUoyQutiMEv54gWsSN085KMzsrfQidUTLLGVeXjFAxW4KFroIwY3TG-B6aUFnITEhF9v_oI3Qc4yshTOSKHKIjJgvFeCkmaHM_tMllna-HdojYtGsfXHrpcGUi1Nj3eN36yrTYhOQaZ90oGxdfcHw3ocOuT9C2bg19wn6TXOc-TXJjyjd4-TDH0Ftfu36NI7wN4wLxBB00po1wup1T9Hx99bS4zVaPN3eL-SqznPOUGWOsInleyKK0FGphQMraClURYkCQsuG5aKDmRlTALWFWFXUujbCq4UIBn6KLn7ub4MfqmHTnoh2fNT34IWqqWFHSUhTqf2shiSqF4my08h-rDT7GAI3eBNeZ8KEp0d9U9DcVvaOiGdWMj6nzbcFQdVD_ZnYY-BcXkIyy</recordid><startdate>20151221</startdate><enddate>20151221</enddate><creator>Guo, Y C</creator><creator>Wang, H</creator><creator>Wu, H P</creator><creator>Zhang, M Q</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20151221</creationdate><title>Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences</title><author>Guo, Y C ; Wang, H ; Wu, H P ; Zhang, M Q</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-aaac80447679c1ed5ae66dc58b00ae509f345fed3a5be3c02c87d46a5c8f358e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>DNA - genetics</topic><topic>Models, Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Y C</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Wu, H P</creatorcontrib><creatorcontrib>Zhang, M Q</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Genetics and molecular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Y C</au><au>Wang, H</au><au>Wu, H P</au><au>Zhang, M Q</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences</atitle><jtitle>Genetics and molecular research</jtitle><addtitle>Genet Mol Res</addtitle><date>2015-12-21</date><risdate>2015</risdate><volume>14</volume><issue>4</issue><spage>17511</spage><epage>17518</epage><pages>17511-17518</pages><issn>1676-5680</issn><eissn>1676-5680</eissn><abstract>Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.</abstract><cop>Brazil</cop><pmid>26782395</pmid><doi>10.4238/2015.December.21.23</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1676-5680
ispartof Genetics and molecular research, 2015-12, Vol.14 (4), p.17511-17518
issn 1676-5680
1676-5680
language eng
recordid cdi_proquest_miscellaneous_1827919578
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
DNA - genetics
Models, Theoretical
title Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-modulus%20algorithm%20based%20on%20global%20artificial%20fish%20swarm%20intelligent%20optimization%20of%20DNA%20encoding%20sequences&rft.jtitle=Genetics%20and%20molecular%20research&rft.au=Guo,%20Y%20C&rft.date=2015-12-21&rft.volume=14&rft.issue=4&rft.spage=17511&rft.epage=17518&rft.pages=17511-17518&rft.issn=1676-5680&rft.eissn=1676-5680&rft_id=info:doi/10.4238/2015.December.21.23&rft_dat=%3Cproquest_cross%3E1760895832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760895832&rft_id=info:pmid/26782395&rfr_iscdi=true