Neuromechanical synergies in single-leg landing reveal changes in movement control
•We assessed lower extremity EMG, kinematics, and kinetics in single-leg landing.•We used principal component analysis (PCA) to evaluate neuromechanical synergies.•PCA revealed biomechanical adjustments across the landing phase and within sub-phases.•Separate PCA approaches revealed potential acute...
Gespeichert in:
Veröffentlicht in: | Human movement science 2016-10, Vol.49, p.66-78 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | |
container_start_page | 66 |
container_title | Human movement science |
container_volume | 49 |
creator | Nordin, Andrew D. Dufek, Janet S. |
description | •We assessed lower extremity EMG, kinematics, and kinetics in single-leg landing.•We used principal component analysis (PCA) to evaluate neuromechanical synergies.•PCA revealed biomechanical adjustments across the landing phase and within sub-phases.•Separate PCA approaches revealed potential acute and overuse injury mechanisms.•Neuromechanical synergies compressed and restructured under greater task demands.
Our purpose was to examine changes in single-leg landing biomechanics and movement control following alterations in mechanical task demands via external load and landing height. We examined lower-extremity kinematic, kinetic, and electromyographic (EMG) adjustments, as well as changes in movement control from neuromechanical synergies using separate principal component analyses (PCA). Nineteen healthy volunteers (15M, 4F, age: 24.3±4.9y, mass: 78.5±14.7kg, height: 1.73±0.08m) were analyzed among 9 single-leg drop landing trials in each of 6 experimental conditions (3 load and 2 landing height) computed as percentages of subject bodyweight (BW, BW+12.5%, BW+25%) and height (H12.5% & H25%). Condition order was counterbalanced, including: 1.) BW·H12.5, 2.) BW+12.5·H12.5, 3.) BW+25·H12.5, 4.) BW·H25, 5.) BW+12.5·H25, 6.) BW+25·H25. Lower-extremity sagittal joint angles and moments (hip, knee, & ankle), vertical ground reaction force (GRFz), and electrical muscle activity (gluteus maximus, biceps femoris, vastus medialis, medial gastrocnemius, & tibialis anterior muscles), were analyzed in each trial. Biomechanical adjustments and neuromechanical synergies were assessed using PCA. Subjects reduced effective landing height through segmental configuration adjustments at ground contact, extending at the hip and ankle joints with greater load and landing height (p⩽0.028 and p⩽0.013, respectively), while using greater medial gastrocnemius pre-activation with greater load (p⩽0.006). Dimension reduction was observed under greater mechanical task demands, compressing and restructuring synergies among patterns of muscle activation, applied loads, and segmental configurations. These results provide insight into movement control and potential injury mechanisms in landing activities. |
doi_str_mv | 10.1016/j.humov.2016.06.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827916357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167945716300835</els_id><sourcerecordid>1827916357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-8b0e11244dc5f30f4aa7ec1751a547aedca6ef859e8869e55e7215e838db88c93</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMotlZ_gSB79LI12XzuwYMUv6AoiJ5Dmp1tU_ajJruF_nuztnoUYSAMeWbe4UHokuApwUTcrKervm630yw2UxwLyyM0JkpmqRRMHKNx_JBpzrgcobMQ1hhjwRg7RaNMUkYEoWP09gK9b2uwK9M4a6ok7BrwSwchcU0SXLOsIK1gmVSmKWKXeNhCxAZ-uYfiDVBD0yW2bTrfVufopDRVgIvDO0EfD_fvs6d0_vr4PLubp5bmWZeqBQZCMsYKy0uKS2aMBEskJ4YzaaCwRkCpeA5KiRw4B5kRDoqqYqGUzekEXe_3bnz72UPodO2ChSpeCm0fNFGZzImgXP4HxTwXgtGI0j1qfRuCh1JvvKuN32mC9eBdr_W3dz141zgWHgKuDgH9oobid-ZHdARu9wBEI1sHXgfroLFQOA-200Xr_gz4AgjRlaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820596643</pqid></control><display><type>article</type><title>Neuromechanical synergies in single-leg landing reveal changes in movement control</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nordin, Andrew D. ; Dufek, Janet S.</creator><creatorcontrib>Nordin, Andrew D. ; Dufek, Janet S.</creatorcontrib><description>•We assessed lower extremity EMG, kinematics, and kinetics in single-leg landing.•We used principal component analysis (PCA) to evaluate neuromechanical synergies.•PCA revealed biomechanical adjustments across the landing phase and within sub-phases.•Separate PCA approaches revealed potential acute and overuse injury mechanisms.•Neuromechanical synergies compressed and restructured under greater task demands.
Our purpose was to examine changes in single-leg landing biomechanics and movement control following alterations in mechanical task demands via external load and landing height. We examined lower-extremity kinematic, kinetic, and electromyographic (EMG) adjustments, as well as changes in movement control from neuromechanical synergies using separate principal component analyses (PCA). Nineteen healthy volunteers (15M, 4F, age: 24.3±4.9y, mass: 78.5±14.7kg, height: 1.73±0.08m) were analyzed among 9 single-leg drop landing trials in each of 6 experimental conditions (3 load and 2 landing height) computed as percentages of subject bodyweight (BW, BW+12.5%, BW+25%) and height (H12.5% & H25%). Condition order was counterbalanced, including: 1.) BW·H12.5, 2.) BW+12.5·H12.5, 3.) BW+25·H12.5, 4.) BW·H25, 5.) BW+12.5·H25, 6.) BW+25·H25. Lower-extremity sagittal joint angles and moments (hip, knee, & ankle), vertical ground reaction force (GRFz), and electrical muscle activity (gluteus maximus, biceps femoris, vastus medialis, medial gastrocnemius, & tibialis anterior muscles), were analyzed in each trial. Biomechanical adjustments and neuromechanical synergies were assessed using PCA. Subjects reduced effective landing height through segmental configuration adjustments at ground contact, extending at the hip and ankle joints with greater load and landing height (p⩽0.028 and p⩽0.013, respectively), while using greater medial gastrocnemius pre-activation with greater load (p⩽0.006). Dimension reduction was observed under greater mechanical task demands, compressing and restructuring synergies among patterns of muscle activation, applied loads, and segmental configurations. These results provide insight into movement control and potential injury mechanisms in landing activities.</description><identifier>ISSN: 0167-9457</identifier><identifier>EISSN: 1872-7646</identifier><identifier>DOI: 10.1016/j.humov.2016.06.007</identifier><identifier>PMID: 27341613</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adult ; Ankle Joint - physiology ; Biomechanical Phenomena - physiology ; Electromyography - methods ; Female ; Gross motor ; Hip Joint - physiology ; Humans ; Knee Joint - physiology ; Leg - physiology ; Lower Extremity - physiology ; Male ; Movement - physiology ; Muscle, Skeletal - physiology ; Musculoskeletal Physiological Phenomena ; Neural ; Principal Component Analysis ; Strategy ; Synergy ; Variability ; Young Adult</subject><ispartof>Human movement science, 2016-10, Vol.49, p.66-78</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-8b0e11244dc5f30f4aa7ec1751a547aedca6ef859e8869e55e7215e838db88c93</citedby><cites>FETCH-LOGICAL-c392t-8b0e11244dc5f30f4aa7ec1751a547aedca6ef859e8869e55e7215e838db88c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.humov.2016.06.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27341613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nordin, Andrew D.</creatorcontrib><creatorcontrib>Dufek, Janet S.</creatorcontrib><title>Neuromechanical synergies in single-leg landing reveal changes in movement control</title><title>Human movement science</title><addtitle>Hum Mov Sci</addtitle><description>•We assessed lower extremity EMG, kinematics, and kinetics in single-leg landing.•We used principal component analysis (PCA) to evaluate neuromechanical synergies.•PCA revealed biomechanical adjustments across the landing phase and within sub-phases.•Separate PCA approaches revealed potential acute and overuse injury mechanisms.•Neuromechanical synergies compressed and restructured under greater task demands.
Our purpose was to examine changes in single-leg landing biomechanics and movement control following alterations in mechanical task demands via external load and landing height. We examined lower-extremity kinematic, kinetic, and electromyographic (EMG) adjustments, as well as changes in movement control from neuromechanical synergies using separate principal component analyses (PCA). Nineteen healthy volunteers (15M, 4F, age: 24.3±4.9y, mass: 78.5±14.7kg, height: 1.73±0.08m) were analyzed among 9 single-leg drop landing trials in each of 6 experimental conditions (3 load and 2 landing height) computed as percentages of subject bodyweight (BW, BW+12.5%, BW+25%) and height (H12.5% & H25%). Condition order was counterbalanced, including: 1.) BW·H12.5, 2.) BW+12.5·H12.5, 3.) BW+25·H12.5, 4.) BW·H25, 5.) BW+12.5·H25, 6.) BW+25·H25. Lower-extremity sagittal joint angles and moments (hip, knee, & ankle), vertical ground reaction force (GRFz), and electrical muscle activity (gluteus maximus, biceps femoris, vastus medialis, medial gastrocnemius, & tibialis anterior muscles), were analyzed in each trial. Biomechanical adjustments and neuromechanical synergies were assessed using PCA. Subjects reduced effective landing height through segmental configuration adjustments at ground contact, extending at the hip and ankle joints with greater load and landing height (p⩽0.028 and p⩽0.013, respectively), while using greater medial gastrocnemius pre-activation with greater load (p⩽0.006). Dimension reduction was observed under greater mechanical task demands, compressing and restructuring synergies among patterns of muscle activation, applied loads, and segmental configurations. These results provide insight into movement control and potential injury mechanisms in landing activities.</description><subject>Adult</subject><subject>Ankle Joint - physiology</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Electromyography - methods</subject><subject>Female</subject><subject>Gross motor</subject><subject>Hip Joint - physiology</subject><subject>Humans</subject><subject>Knee Joint - physiology</subject><subject>Leg - physiology</subject><subject>Lower Extremity - physiology</subject><subject>Male</subject><subject>Movement - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Musculoskeletal Physiological Phenomena</subject><subject>Neural</subject><subject>Principal Component Analysis</subject><subject>Strategy</subject><subject>Synergy</subject><subject>Variability</subject><subject>Young Adult</subject><issn>0167-9457</issn><issn>1872-7646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LAzEQhoMotlZ_gSB79LI12XzuwYMUv6AoiJ5Dmp1tU_ajJruF_nuztnoUYSAMeWbe4UHokuApwUTcrKervm630yw2UxwLyyM0JkpmqRRMHKNx_JBpzrgcobMQ1hhjwRg7RaNMUkYEoWP09gK9b2uwK9M4a6ok7BrwSwchcU0SXLOsIK1gmVSmKWKXeNhCxAZ-uYfiDVBD0yW2bTrfVufopDRVgIvDO0EfD_fvs6d0_vr4PLubp5bmWZeqBQZCMsYKy0uKS2aMBEskJ4YzaaCwRkCpeA5KiRw4B5kRDoqqYqGUzekEXe_3bnz72UPodO2ChSpeCm0fNFGZzImgXP4HxTwXgtGI0j1qfRuCh1JvvKuN32mC9eBdr_W3dz141zgWHgKuDgH9oobid-ZHdARu9wBEI1sHXgfroLFQOA-200Xr_gz4AgjRlaA</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Nordin, Andrew D.</creator><creator>Dufek, Janet S.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TS</scope></search><sort><creationdate>201610</creationdate><title>Neuromechanical synergies in single-leg landing reveal changes in movement control</title><author>Nordin, Andrew D. ; Dufek, Janet S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-8b0e11244dc5f30f4aa7ec1751a547aedca6ef859e8869e55e7215e838db88c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Ankle Joint - physiology</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Electromyography - methods</topic><topic>Female</topic><topic>Gross motor</topic><topic>Hip Joint - physiology</topic><topic>Humans</topic><topic>Knee Joint - physiology</topic><topic>Leg - physiology</topic><topic>Lower Extremity - physiology</topic><topic>Male</topic><topic>Movement - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Musculoskeletal Physiological Phenomena</topic><topic>Neural</topic><topic>Principal Component Analysis</topic><topic>Strategy</topic><topic>Synergy</topic><topic>Variability</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nordin, Andrew D.</creatorcontrib><creatorcontrib>Dufek, Janet S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Physical Education Index</collection><jtitle>Human movement science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nordin, Andrew D.</au><au>Dufek, Janet S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuromechanical synergies in single-leg landing reveal changes in movement control</atitle><jtitle>Human movement science</jtitle><addtitle>Hum Mov Sci</addtitle><date>2016-10</date><risdate>2016</risdate><volume>49</volume><spage>66</spage><epage>78</epage><pages>66-78</pages><issn>0167-9457</issn><eissn>1872-7646</eissn><abstract>•We assessed lower extremity EMG, kinematics, and kinetics in single-leg landing.•We used principal component analysis (PCA) to evaluate neuromechanical synergies.•PCA revealed biomechanical adjustments across the landing phase and within sub-phases.•Separate PCA approaches revealed potential acute and overuse injury mechanisms.•Neuromechanical synergies compressed and restructured under greater task demands.
Our purpose was to examine changes in single-leg landing biomechanics and movement control following alterations in mechanical task demands via external load and landing height. We examined lower-extremity kinematic, kinetic, and electromyographic (EMG) adjustments, as well as changes in movement control from neuromechanical synergies using separate principal component analyses (PCA). Nineteen healthy volunteers (15M, 4F, age: 24.3±4.9y, mass: 78.5±14.7kg, height: 1.73±0.08m) were analyzed among 9 single-leg drop landing trials in each of 6 experimental conditions (3 load and 2 landing height) computed as percentages of subject bodyweight (BW, BW+12.5%, BW+25%) and height (H12.5% & H25%). Condition order was counterbalanced, including: 1.) BW·H12.5, 2.) BW+12.5·H12.5, 3.) BW+25·H12.5, 4.) BW·H25, 5.) BW+12.5·H25, 6.) BW+25·H25. Lower-extremity sagittal joint angles and moments (hip, knee, & ankle), vertical ground reaction force (GRFz), and electrical muscle activity (gluteus maximus, biceps femoris, vastus medialis, medial gastrocnemius, & tibialis anterior muscles), were analyzed in each trial. Biomechanical adjustments and neuromechanical synergies were assessed using PCA. Subjects reduced effective landing height through segmental configuration adjustments at ground contact, extending at the hip and ankle joints with greater load and landing height (p⩽0.028 and p⩽0.013, respectively), while using greater medial gastrocnemius pre-activation with greater load (p⩽0.006). Dimension reduction was observed under greater mechanical task demands, compressing and restructuring synergies among patterns of muscle activation, applied loads, and segmental configurations. These results provide insight into movement control and potential injury mechanisms in landing activities.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27341613</pmid><doi>10.1016/j.humov.2016.06.007</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9457 |
ispartof | Human movement science, 2016-10, Vol.49, p.66-78 |
issn | 0167-9457 1872-7646 |
language | eng |
recordid | cdi_proquest_miscellaneous_1827916357 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Ankle Joint - physiology Biomechanical Phenomena - physiology Electromyography - methods Female Gross motor Hip Joint - physiology Humans Knee Joint - physiology Leg - physiology Lower Extremity - physiology Male Movement - physiology Muscle, Skeletal - physiology Musculoskeletal Physiological Phenomena Neural Principal Component Analysis Strategy Synergy Variability Young Adult |
title | Neuromechanical synergies in single-leg landing reveal changes in movement control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuromechanical%20synergies%20in%20single-leg%20landing%20reveal%20changes%20in%20movement%20control&rft.jtitle=Human%20movement%20science&rft.au=Nordin,%20Andrew%20D.&rft.date=2016-10&rft.volume=49&rft.spage=66&rft.epage=78&rft.pages=66-78&rft.issn=0167-9457&rft.eissn=1872-7646&rft_id=info:doi/10.1016/j.humov.2016.06.007&rft_dat=%3Cproquest_cross%3E1827916357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820596643&rft_id=info:pmid/27341613&rft_els_id=S0167945716300835&rfr_iscdi=true |