Neuromechanical synergies in single-leg landing reveal changes in movement control

•We assessed lower extremity EMG, kinematics, and kinetics in single-leg landing.•We used principal component analysis (PCA) to evaluate neuromechanical synergies.•PCA revealed biomechanical adjustments across the landing phase and within sub-phases.•Separate PCA approaches revealed potential acute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human movement science 2016-10, Vol.49, p.66-78
Hauptverfasser: Nordin, Andrew D., Dufek, Janet S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue
container_start_page 66
container_title Human movement science
container_volume 49
creator Nordin, Andrew D.
Dufek, Janet S.
description •We assessed lower extremity EMG, kinematics, and kinetics in single-leg landing.•We used principal component analysis (PCA) to evaluate neuromechanical synergies.•PCA revealed biomechanical adjustments across the landing phase and within sub-phases.•Separate PCA approaches revealed potential acute and overuse injury mechanisms.•Neuromechanical synergies compressed and restructured under greater task demands. Our purpose was to examine changes in single-leg landing biomechanics and movement control following alterations in mechanical task demands via external load and landing height. We examined lower-extremity kinematic, kinetic, and electromyographic (EMG) adjustments, as well as changes in movement control from neuromechanical synergies using separate principal component analyses (PCA). Nineteen healthy volunteers (15M, 4F, age: 24.3±4.9y, mass: 78.5±14.7kg, height: 1.73±0.08m) were analyzed among 9 single-leg drop landing trials in each of 6 experimental conditions (3 load and 2 landing height) computed as percentages of subject bodyweight (BW, BW+12.5%, BW+25%) and height (H12.5% & H25%). Condition order was counterbalanced, including: 1.) BW·H12.5, 2.) BW+12.5·H12.5, 3.) BW+25·H12.5, 4.) BW·H25, 5.) BW+12.5·H25, 6.) BW+25·H25. Lower-extremity sagittal joint angles and moments (hip, knee, & ankle), vertical ground reaction force (GRFz), and electrical muscle activity (gluteus maximus, biceps femoris, vastus medialis, medial gastrocnemius, & tibialis anterior muscles), were analyzed in each trial. Biomechanical adjustments and neuromechanical synergies were assessed using PCA. Subjects reduced effective landing height through segmental configuration adjustments at ground contact, extending at the hip and ankle joints with greater load and landing height (p⩽0.028 and p⩽0.013, respectively), while using greater medial gastrocnemius pre-activation with greater load (p⩽0.006). Dimension reduction was observed under greater mechanical task demands, compressing and restructuring synergies among patterns of muscle activation, applied loads, and segmental configurations. These results provide insight into movement control and potential injury mechanisms in landing activities.
doi_str_mv 10.1016/j.humov.2016.06.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827916357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167945716300835</els_id><sourcerecordid>1827916357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-8b0e11244dc5f30f4aa7ec1751a547aedca6ef859e8869e55e7215e838db88c93</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMotlZ_gSB79LI12XzuwYMUv6AoiJ5Dmp1tU_ajJruF_nuztnoUYSAMeWbe4UHokuApwUTcrKervm630yw2UxwLyyM0JkpmqRRMHKNx_JBpzrgcobMQ1hhjwRg7RaNMUkYEoWP09gK9b2uwK9M4a6ok7BrwSwchcU0SXLOsIK1gmVSmKWKXeNhCxAZ-uYfiDVBD0yW2bTrfVufopDRVgIvDO0EfD_fvs6d0_vr4PLubp5bmWZeqBQZCMsYKy0uKS2aMBEskJ4YzaaCwRkCpeA5KiRw4B5kRDoqqYqGUzekEXe_3bnz72UPodO2ChSpeCm0fNFGZzImgXP4HxTwXgtGI0j1qfRuCh1JvvKuN32mC9eBdr_W3dz141zgWHgKuDgH9oobid-ZHdARu9wBEI1sHXgfroLFQOA-200Xr_gz4AgjRlaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820596643</pqid></control><display><type>article</type><title>Neuromechanical synergies in single-leg landing reveal changes in movement control</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nordin, Andrew D. ; Dufek, Janet S.</creator><creatorcontrib>Nordin, Andrew D. ; Dufek, Janet S.</creatorcontrib><description>•We assessed lower extremity EMG, kinematics, and kinetics in single-leg landing.•We used principal component analysis (PCA) to evaluate neuromechanical synergies.•PCA revealed biomechanical adjustments across the landing phase and within sub-phases.•Separate PCA approaches revealed potential acute and overuse injury mechanisms.•Neuromechanical synergies compressed and restructured under greater task demands. Our purpose was to examine changes in single-leg landing biomechanics and movement control following alterations in mechanical task demands via external load and landing height. We examined lower-extremity kinematic, kinetic, and electromyographic (EMG) adjustments, as well as changes in movement control from neuromechanical synergies using separate principal component analyses (PCA). Nineteen healthy volunteers (15M, 4F, age: 24.3±4.9y, mass: 78.5±14.7kg, height: 1.73±0.08m) were analyzed among 9 single-leg drop landing trials in each of 6 experimental conditions (3 load and 2 landing height) computed as percentages of subject bodyweight (BW, BW+12.5%, BW+25%) and height (H12.5% &amp; H25%). Condition order was counterbalanced, including: 1.) BW·H12.5, 2.) BW+12.5·H12.5, 3.) BW+25·H12.5, 4.) BW·H25, 5.) BW+12.5·H25, 6.) BW+25·H25. Lower-extremity sagittal joint angles and moments (hip, knee, &amp; ankle), vertical ground reaction force (GRFz), and electrical muscle activity (gluteus maximus, biceps femoris, vastus medialis, medial gastrocnemius, &amp; tibialis anterior muscles), were analyzed in each trial. Biomechanical adjustments and neuromechanical synergies were assessed using PCA. Subjects reduced effective landing height through segmental configuration adjustments at ground contact, extending at the hip and ankle joints with greater load and landing height (p⩽0.028 and p⩽0.013, respectively), while using greater medial gastrocnemius pre-activation with greater load (p⩽0.006). Dimension reduction was observed under greater mechanical task demands, compressing and restructuring synergies among patterns of muscle activation, applied loads, and segmental configurations. These results provide insight into movement control and potential injury mechanisms in landing activities.</description><identifier>ISSN: 0167-9457</identifier><identifier>EISSN: 1872-7646</identifier><identifier>DOI: 10.1016/j.humov.2016.06.007</identifier><identifier>PMID: 27341613</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adult ; Ankle Joint - physiology ; Biomechanical Phenomena - physiology ; Electromyography - methods ; Female ; Gross motor ; Hip Joint - physiology ; Humans ; Knee Joint - physiology ; Leg - physiology ; Lower Extremity - physiology ; Male ; Movement - physiology ; Muscle, Skeletal - physiology ; Musculoskeletal Physiological Phenomena ; Neural ; Principal Component Analysis ; Strategy ; Synergy ; Variability ; Young Adult</subject><ispartof>Human movement science, 2016-10, Vol.49, p.66-78</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-8b0e11244dc5f30f4aa7ec1751a547aedca6ef859e8869e55e7215e838db88c93</citedby><cites>FETCH-LOGICAL-c392t-8b0e11244dc5f30f4aa7ec1751a547aedca6ef859e8869e55e7215e838db88c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.humov.2016.06.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27341613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nordin, Andrew D.</creatorcontrib><creatorcontrib>Dufek, Janet S.</creatorcontrib><title>Neuromechanical synergies in single-leg landing reveal changes in movement control</title><title>Human movement science</title><addtitle>Hum Mov Sci</addtitle><description>•We assessed lower extremity EMG, kinematics, and kinetics in single-leg landing.•We used principal component analysis (PCA) to evaluate neuromechanical synergies.•PCA revealed biomechanical adjustments across the landing phase and within sub-phases.•Separate PCA approaches revealed potential acute and overuse injury mechanisms.•Neuromechanical synergies compressed and restructured under greater task demands. Our purpose was to examine changes in single-leg landing biomechanics and movement control following alterations in mechanical task demands via external load and landing height. We examined lower-extremity kinematic, kinetic, and electromyographic (EMG) adjustments, as well as changes in movement control from neuromechanical synergies using separate principal component analyses (PCA). Nineteen healthy volunteers (15M, 4F, age: 24.3±4.9y, mass: 78.5±14.7kg, height: 1.73±0.08m) were analyzed among 9 single-leg drop landing trials in each of 6 experimental conditions (3 load and 2 landing height) computed as percentages of subject bodyweight (BW, BW+12.5%, BW+25%) and height (H12.5% &amp; H25%). Condition order was counterbalanced, including: 1.) BW·H12.5, 2.) BW+12.5·H12.5, 3.) BW+25·H12.5, 4.) BW·H25, 5.) BW+12.5·H25, 6.) BW+25·H25. Lower-extremity sagittal joint angles and moments (hip, knee, &amp; ankle), vertical ground reaction force (GRFz), and electrical muscle activity (gluteus maximus, biceps femoris, vastus medialis, medial gastrocnemius, &amp; tibialis anterior muscles), were analyzed in each trial. Biomechanical adjustments and neuromechanical synergies were assessed using PCA. Subjects reduced effective landing height through segmental configuration adjustments at ground contact, extending at the hip and ankle joints with greater load and landing height (p⩽0.028 and p⩽0.013, respectively), while using greater medial gastrocnemius pre-activation with greater load (p⩽0.006). Dimension reduction was observed under greater mechanical task demands, compressing and restructuring synergies among patterns of muscle activation, applied loads, and segmental configurations. These results provide insight into movement control and potential injury mechanisms in landing activities.</description><subject>Adult</subject><subject>Ankle Joint - physiology</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Electromyography - methods</subject><subject>Female</subject><subject>Gross motor</subject><subject>Hip Joint - physiology</subject><subject>Humans</subject><subject>Knee Joint - physiology</subject><subject>Leg - physiology</subject><subject>Lower Extremity - physiology</subject><subject>Male</subject><subject>Movement - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Musculoskeletal Physiological Phenomena</subject><subject>Neural</subject><subject>Principal Component Analysis</subject><subject>Strategy</subject><subject>Synergy</subject><subject>Variability</subject><subject>Young Adult</subject><issn>0167-9457</issn><issn>1872-7646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LAzEQhoMotlZ_gSB79LI12XzuwYMUv6AoiJ5Dmp1tU_ajJruF_nuztnoUYSAMeWbe4UHokuApwUTcrKervm630yw2UxwLyyM0JkpmqRRMHKNx_JBpzrgcobMQ1hhjwRg7RaNMUkYEoWP09gK9b2uwK9M4a6ok7BrwSwchcU0SXLOsIK1gmVSmKWKXeNhCxAZ-uYfiDVBD0yW2bTrfVufopDRVgIvDO0EfD_fvs6d0_vr4PLubp5bmWZeqBQZCMsYKy0uKS2aMBEskJ4YzaaCwRkCpeA5KiRw4B5kRDoqqYqGUzekEXe_3bnz72UPodO2ChSpeCm0fNFGZzImgXP4HxTwXgtGI0j1qfRuCh1JvvKuN32mC9eBdr_W3dz141zgWHgKuDgH9oobid-ZHdARu9wBEI1sHXgfroLFQOA-200Xr_gz4AgjRlaA</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Nordin, Andrew D.</creator><creator>Dufek, Janet S.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TS</scope></search><sort><creationdate>201610</creationdate><title>Neuromechanical synergies in single-leg landing reveal changes in movement control</title><author>Nordin, Andrew D. ; Dufek, Janet S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-8b0e11244dc5f30f4aa7ec1751a547aedca6ef859e8869e55e7215e838db88c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Ankle Joint - physiology</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Electromyography - methods</topic><topic>Female</topic><topic>Gross motor</topic><topic>Hip Joint - physiology</topic><topic>Humans</topic><topic>Knee Joint - physiology</topic><topic>Leg - physiology</topic><topic>Lower Extremity - physiology</topic><topic>Male</topic><topic>Movement - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Musculoskeletal Physiological Phenomena</topic><topic>Neural</topic><topic>Principal Component Analysis</topic><topic>Strategy</topic><topic>Synergy</topic><topic>Variability</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nordin, Andrew D.</creatorcontrib><creatorcontrib>Dufek, Janet S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Physical Education Index</collection><jtitle>Human movement science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nordin, Andrew D.</au><au>Dufek, Janet S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuromechanical synergies in single-leg landing reveal changes in movement control</atitle><jtitle>Human movement science</jtitle><addtitle>Hum Mov Sci</addtitle><date>2016-10</date><risdate>2016</risdate><volume>49</volume><spage>66</spage><epage>78</epage><pages>66-78</pages><issn>0167-9457</issn><eissn>1872-7646</eissn><abstract>•We assessed lower extremity EMG, kinematics, and kinetics in single-leg landing.•We used principal component analysis (PCA) to evaluate neuromechanical synergies.•PCA revealed biomechanical adjustments across the landing phase and within sub-phases.•Separate PCA approaches revealed potential acute and overuse injury mechanisms.•Neuromechanical synergies compressed and restructured under greater task demands. Our purpose was to examine changes in single-leg landing biomechanics and movement control following alterations in mechanical task demands via external load and landing height. We examined lower-extremity kinematic, kinetic, and electromyographic (EMG) adjustments, as well as changes in movement control from neuromechanical synergies using separate principal component analyses (PCA). Nineteen healthy volunteers (15M, 4F, age: 24.3±4.9y, mass: 78.5±14.7kg, height: 1.73±0.08m) were analyzed among 9 single-leg drop landing trials in each of 6 experimental conditions (3 load and 2 landing height) computed as percentages of subject bodyweight (BW, BW+12.5%, BW+25%) and height (H12.5% &amp; H25%). Condition order was counterbalanced, including: 1.) BW·H12.5, 2.) BW+12.5·H12.5, 3.) BW+25·H12.5, 4.) BW·H25, 5.) BW+12.5·H25, 6.) BW+25·H25. Lower-extremity sagittal joint angles and moments (hip, knee, &amp; ankle), vertical ground reaction force (GRFz), and electrical muscle activity (gluteus maximus, biceps femoris, vastus medialis, medial gastrocnemius, &amp; tibialis anterior muscles), were analyzed in each trial. Biomechanical adjustments and neuromechanical synergies were assessed using PCA. Subjects reduced effective landing height through segmental configuration adjustments at ground contact, extending at the hip and ankle joints with greater load and landing height (p⩽0.028 and p⩽0.013, respectively), while using greater medial gastrocnemius pre-activation with greater load (p⩽0.006). Dimension reduction was observed under greater mechanical task demands, compressing and restructuring synergies among patterns of muscle activation, applied loads, and segmental configurations. These results provide insight into movement control and potential injury mechanisms in landing activities.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27341613</pmid><doi>10.1016/j.humov.2016.06.007</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9457
ispartof Human movement science, 2016-10, Vol.49, p.66-78
issn 0167-9457
1872-7646
language eng
recordid cdi_proquest_miscellaneous_1827916357
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Ankle Joint - physiology
Biomechanical Phenomena - physiology
Electromyography - methods
Female
Gross motor
Hip Joint - physiology
Humans
Knee Joint - physiology
Leg - physiology
Lower Extremity - physiology
Male
Movement - physiology
Muscle, Skeletal - physiology
Musculoskeletal Physiological Phenomena
Neural
Principal Component Analysis
Strategy
Synergy
Variability
Young Adult
title Neuromechanical synergies in single-leg landing reveal changes in movement control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuromechanical%20synergies%20in%20single-leg%20landing%20reveal%20changes%20in%20movement%20control&rft.jtitle=Human%20movement%20science&rft.au=Nordin,%20Andrew%20D.&rft.date=2016-10&rft.volume=49&rft.spage=66&rft.epage=78&rft.pages=66-78&rft.issn=0167-9457&rft.eissn=1872-7646&rft_id=info:doi/10.1016/j.humov.2016.06.007&rft_dat=%3Cproquest_cross%3E1827916357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820596643&rft_id=info:pmid/27341613&rft_els_id=S0167945716300835&rfr_iscdi=true