Microstructure observations in the upper layer of the South China Sea

A general pattern for turbulent mixing in the upper layer of the South China Sea (SCS) is presented based on TurboMAP measurements in April and May 2010. The turbulence level decreased significantly overall from north to south, and weakened from east to west in the northern SCS. The average dissipat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of oceanography 2016-10, Vol.72 (5), p.777-786
Hauptverfasser: Sun, Hui, Wang, Qingye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 786
container_issue 5
container_start_page 777
container_title Journal of oceanography
container_volume 72
creator Sun, Hui
Wang, Qingye
description A general pattern for turbulent mixing in the upper layer of the South China Sea (SCS) is presented based on TurboMAP measurements in April and May 2010. The turbulence level decreased significantly overall from north to south, and weakened from east to west in the northern SCS. The average dissipation rate north of 18°N reaches 1.69 × 10 −8  W/kg, approximately six times larger than that south of 18°N. The mean mixing efficiency in the SCS is 0.2, with a maximum of 0.31 near the Luzon Strait. At one repeatedly occupied station located in the central deep basin, the dissipation rate varies diurnally in the mixed layer and pycnocline due to diurnal heating and cooling by solar radiation and local barotropic tide, respectively.
doi_str_mv 10.1007/s10872-016-0371-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827913361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4189785621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-e892d6ad2d16ed8a191e0260e2d440c35105610d265a0c6c70019630a33a3ba73</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRsFYfwFvAi5fozG6yuzlKqVWoeKiCt2WbTG1Kmo27idC3NzEeRPAyAzPfPwwfY5cINwigbgOCVjwGlDEIhbE4YhNMlYi11G_HbAJZv9FCwSk7C2EHAJlWYsLmT2XuXWh9l7edp8itA_lP25auDlFZR-2Woq5pyEeVPfTVbb5HK9e122i2LWsbrcies5ONrQJd_PQpe72fv8we4uXz4nF2t4zzJOFtTDrjhbQFL1BSoS1mSMAlEC-SBHKRIqQSoeAytZDLXAFgJgVYIaxYWyWm7Hq823j30VFozb4MOVWVrcl1waDmKkMhJPbo1R905zpf998NFIdEQiJ6CkdqkBA8bUzjy731B4NgBrFmFGt6sWYQa4YMHzOhZ-t38r8u_xv6Ap0zeQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822046043</pqid></control><display><type>article</type><title>Microstructure observations in the upper layer of the South China Sea</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Hui ; Wang, Qingye</creator><creatorcontrib>Sun, Hui ; Wang, Qingye</creatorcontrib><description>A general pattern for turbulent mixing in the upper layer of the South China Sea (SCS) is presented based on TurboMAP measurements in April and May 2010. The turbulence level decreased significantly overall from north to south, and weakened from east to west in the northern SCS. The average dissipation rate north of 18°N reaches 1.69 × 10 −8  W/kg, approximately six times larger than that south of 18°N. The mean mixing efficiency in the SCS is 0.2, with a maximum of 0.31 near the Luzon Strait. At one repeatedly occupied station located in the central deep basin, the dissipation rate varies diurnally in the mixed layer and pycnocline due to diurnal heating and cooling by solar radiation and local barotropic tide, respectively.</description><identifier>ISSN: 0916-8370</identifier><identifier>EISSN: 1573-868X</identifier><identifier>DOI: 10.1007/s10872-016-0371-3</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Earth and Environmental Science ; Earth Sciences ; Freshwater &amp; Marine Ecology ; Marine ; Ocean-atmosphere interaction ; Oceanography ; Original Article ; Solar radiation ; Tides ; Turbulence models</subject><ispartof>Journal of oceanography, 2016-10, Vol.72 (5), p.777-786</ispartof><rights>The Oceanographic Society of Japan and Springer Japan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-e892d6ad2d16ed8a191e0260e2d440c35105610d265a0c6c70019630a33a3ba73</citedby><cites>FETCH-LOGICAL-c442t-e892d6ad2d16ed8a191e0260e2d440c35105610d265a0c6c70019630a33a3ba73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10872-016-0371-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10872-016-0371-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sun, Hui</creatorcontrib><creatorcontrib>Wang, Qingye</creatorcontrib><title>Microstructure observations in the upper layer of the South China Sea</title><title>Journal of oceanography</title><addtitle>J Oceanogr</addtitle><description>A general pattern for turbulent mixing in the upper layer of the South China Sea (SCS) is presented based on TurboMAP measurements in April and May 2010. The turbulence level decreased significantly overall from north to south, and weakened from east to west in the northern SCS. The average dissipation rate north of 18°N reaches 1.69 × 10 −8  W/kg, approximately six times larger than that south of 18°N. The mean mixing efficiency in the SCS is 0.2, with a maximum of 0.31 near the Luzon Strait. At one repeatedly occupied station located in the central deep basin, the dissipation rate varies diurnally in the mixed layer and pycnocline due to diurnal heating and cooling by solar radiation and local barotropic tide, respectively.</description><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Marine</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceanography</subject><subject>Original Article</subject><subject>Solar radiation</subject><subject>Tides</subject><subject>Turbulence models</subject><issn>0916-8370</issn><issn>1573-868X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKw0AQhhdRsFYfwFvAi5fozG6yuzlKqVWoeKiCt2WbTG1Kmo27idC3NzEeRPAyAzPfPwwfY5cINwigbgOCVjwGlDEIhbE4YhNMlYi11G_HbAJZv9FCwSk7C2EHAJlWYsLmT2XuXWh9l7edp8itA_lP25auDlFZR-2Woq5pyEeVPfTVbb5HK9e122i2LWsbrcies5ONrQJd_PQpe72fv8we4uXz4nF2t4zzJOFtTDrjhbQFL1BSoS1mSMAlEC-SBHKRIqQSoeAytZDLXAFgJgVYIaxYWyWm7Hq823j30VFozb4MOVWVrcl1waDmKkMhJPbo1R905zpf998NFIdEQiJ6CkdqkBA8bUzjy731B4NgBrFmFGt6sWYQa4YMHzOhZ-t38r8u_xv6Ap0zeQU</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Sun, Hui</creator><creator>Wang, Qingye</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20161001</creationdate><title>Microstructure observations in the upper layer of the South China Sea</title><author>Sun, Hui ; Wang, Qingye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-e892d6ad2d16ed8a191e0260e2d440c35105610d265a0c6c70019630a33a3ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Marine</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceanography</topic><topic>Original Article</topic><topic>Solar radiation</topic><topic>Tides</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Hui</creatorcontrib><creatorcontrib>Wang, Qingye</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Hui</au><au>Wang, Qingye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure observations in the upper layer of the South China Sea</atitle><jtitle>Journal of oceanography</jtitle><stitle>J Oceanogr</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>72</volume><issue>5</issue><spage>777</spage><epage>786</epage><pages>777-786</pages><issn>0916-8370</issn><eissn>1573-868X</eissn><abstract>A general pattern for turbulent mixing in the upper layer of the South China Sea (SCS) is presented based on TurboMAP measurements in April and May 2010. The turbulence level decreased significantly overall from north to south, and weakened from east to west in the northern SCS. The average dissipation rate north of 18°N reaches 1.69 × 10 −8  W/kg, approximately six times larger than that south of 18°N. The mean mixing efficiency in the SCS is 0.2, with a maximum of 0.31 near the Luzon Strait. At one repeatedly occupied station located in the central deep basin, the dissipation rate varies diurnally in the mixed layer and pycnocline due to diurnal heating and cooling by solar radiation and local barotropic tide, respectively.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10872-016-0371-3</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8370
ispartof Journal of oceanography, 2016-10, Vol.72 (5), p.777-786
issn 0916-8370
1573-868X
language eng
recordid cdi_proquest_miscellaneous_1827913361
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Earth and Environmental Science
Earth Sciences
Freshwater & Marine Ecology
Marine
Ocean-atmosphere interaction
Oceanography
Original Article
Solar radiation
Tides
Turbulence models
title Microstructure observations in the upper layer of the South China Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20observations%20in%20the%20upper%20layer%20of%20the%20South%20China%20Sea&rft.jtitle=Journal%20of%20oceanography&rft.au=Sun,%20Hui&rft.date=2016-10-01&rft.volume=72&rft.issue=5&rft.spage=777&rft.epage=786&rft.pages=777-786&rft.issn=0916-8370&rft.eissn=1573-868X&rft_id=info:doi/10.1007/s10872-016-0371-3&rft_dat=%3Cproquest_cross%3E4189785621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822046043&rft_id=info:pmid/&rfr_iscdi=true