Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays
Abstract Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Aci...
Gespeichert in:
Veröffentlicht in: | Journal of industrial microbiology & biotechnology 2016-10, Vol.43 (10), p.1441-1453 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1453 |
---|---|
container_issue | 10 |
container_start_page | 1441 |
container_title | Journal of industrial microbiology & biotechnology |
container_volume | 43 |
creator | Ma, Liyuan Li, Qian Shen, Li Feng, Xue Xiao, Yunhua Tao, Jiemeng Liang, Yili Yin, Huaqun Liu, Xueduan |
description | Abstract
Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S0 substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed. |
doi_str_mv | 10.1007/s10295-016-1827-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827906093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1007/s10295-016-1827-6</oup_id><sourcerecordid>4184894431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-ced14a0ad8ec178fdf970d8f08462759337f07b8979123c41d088eb773ba69323</originalsourceid><addsrcrecordid>eNqNksFu1DAURSMEoqXwAWyQJTYsCDzbie0sRyNaKlViU9aRE7_MuErswS8R7R_w2XiagiokECtb8rnX7_q6KF5z-MAB9EfiIJq6BK5KboQu1ZPilFdalXUt66d5L5Uu60rWJ8ULohsAqLUWz4sToWvegIDT4sdlIL_bz8R8mCOb98iGcYnJOywTkqfZhpkl3C2jnX0MbMJ-b4OnicWBbXrv_Lz3sbO9H8eF2IApxXjrnQ3ENtfbLRNSaGCdJXQs67_v44hshyFOyCbfp2hTsnf0sng22JHw1cN6Vnw9_3S9_Vxefbm43G6uyr7SzVz26HhlwTqDPddmcEOjwZkBTKVyqkZKPYDuTKMbLmRfcQfGYKe17KxqpJBnxbvV95DitwVpbidPPY6jDRgXao8P2YCC7PQfaAa5liajb_9Ab-KSQg5yTwmlDD9SfKVyaqKEQ3tIfrLpruXQHhtt10bb3Oj9IK3KmjcPzks3ofut-FVhBsQKUD4KO0yPrv6H6_tVFJfDX4Z49K3kT6ZTuDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820266818</pqid></control><display><type>article</type><title>Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Ma, Liyuan ; Li, Qian ; Shen, Li ; Feng, Xue ; Xiao, Yunhua ; Tao, Jiemeng ; Liang, Yili ; Yin, Huaqun ; Liu, Xueduan</creator><creatorcontrib>Ma, Liyuan ; Li, Qian ; Shen, Li ; Feng, Xue ; Xiao, Yunhua ; Tao, Jiemeng ; Liang, Yili ; Yin, Huaqun ; Liu, Xueduan</creatorcontrib><description>Abstract
Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S0 substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-016-1827-6</identifier><identifier>PMID: 27519020</identifier><language>eng</language><publisher>Berlin/Heidelberg: Oxford University Press</publisher><subject>Acidithiobacillus - drug effects ; Acidithiobacillus - genetics ; Acidithiobacillus - metabolism ; Acidithiobacillus ferrooxidans ; Analysis ; Bacteria ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biotechnology ; Energy ; Energy Metabolism - genetics ; Environmental impact ; Extraction processes ; Ferrous Compounds - metabolism ; Fluorides ; Fluorides - toxicity ; Gene expression ; Gene Expression Profiling ; Genetic Engineering ; Genetics and Molecular Biology of Industrial Organisms - Original Paper ; Genomes ; Genomics ; Inorganic Chemistry ; Laboratories ; Leaching ; Life Sciences ; Metabolism ; Microbiology ; Microorganisms ; Minerals ; Oligonucleotide Array Sequence Analysis ; Oxidation ; Oxidation-Reduction ; Protein synthesis ; Studies ; Sulfur ; Sulfur - metabolism ; Uranium</subject><ispartof>Journal of industrial microbiology & biotechnology, 2016-10, Vol.43 (10), p.1441-1453</ispartof><rights>Society for Industrial Microbiology 2016 2016</rights><rights>Society for Industrial Microbiology and Biotechnology 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-ced14a0ad8ec178fdf970d8f08462759337f07b8979123c41d088eb773ba69323</citedby><cites>FETCH-LOGICAL-c479t-ced14a0ad8ec178fdf970d8f08462759337f07b8979123c41d088eb773ba69323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-016-1827-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-016-1827-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27519020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Liyuan</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Feng, Xue</creatorcontrib><creatorcontrib>Xiao, Yunhua</creatorcontrib><creatorcontrib>Tao, Jiemeng</creatorcontrib><creatorcontrib>Liang, Yili</creatorcontrib><creatorcontrib>Yin, Huaqun</creatorcontrib><creatorcontrib>Liu, Xueduan</creatorcontrib><title>Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays</title><title>Journal of industrial microbiology & biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>Abstract
Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S0 substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed.</description><subject>Acidithiobacillus - drug effects</subject><subject>Acidithiobacillus - genetics</subject><subject>Acidithiobacillus - metabolism</subject><subject>Acidithiobacillus ferrooxidans</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Energy</subject><subject>Energy Metabolism - genetics</subject><subject>Environmental impact</subject><subject>Extraction processes</subject><subject>Ferrous Compounds - metabolism</subject><subject>Fluorides</subject><subject>Fluorides - toxicity</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genetic Engineering</subject><subject>Genetics and Molecular Biology of Industrial Organisms - Original Paper</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Inorganic Chemistry</subject><subject>Laboratories</subject><subject>Leaching</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Protein synthesis</subject><subject>Studies</subject><subject>Sulfur</subject><subject>Sulfur - metabolism</subject><subject>Uranium</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNksFu1DAURSMEoqXwAWyQJTYsCDzbie0sRyNaKlViU9aRE7_MuErswS8R7R_w2XiagiokECtb8rnX7_q6KF5z-MAB9EfiIJq6BK5KboQu1ZPilFdalXUt66d5L5Uu60rWJ8ULohsAqLUWz4sToWvegIDT4sdlIL_bz8R8mCOb98iGcYnJOywTkqfZhpkl3C2jnX0MbMJ-b4OnicWBbXrv_Lz3sbO9H8eF2IApxXjrnQ3ENtfbLRNSaGCdJXQs67_v44hshyFOyCbfp2hTsnf0sng22JHw1cN6Vnw9_3S9_Vxefbm43G6uyr7SzVz26HhlwTqDPddmcEOjwZkBTKVyqkZKPYDuTKMbLmRfcQfGYKe17KxqpJBnxbvV95DitwVpbidPPY6jDRgXao8P2YCC7PQfaAa5liajb_9Ab-KSQg5yTwmlDD9SfKVyaqKEQ3tIfrLpruXQHhtt10bb3Oj9IK3KmjcPzks3ofut-FVhBsQKUD4KO0yPrv6H6_tVFJfDX4Z49K3kT6ZTuDI</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Ma, Liyuan</creator><creator>Li, Qian</creator><creator>Shen, Li</creator><creator>Feng, Xue</creator><creator>Xiao, Yunhua</creator><creator>Tao, Jiemeng</creator><creator>Liang, Yili</creator><creator>Yin, Huaqun</creator><creator>Liu, Xueduan</creator><general>Oxford University Press</general><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20161001</creationdate><title>Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays</title><author>Ma, Liyuan ; Li, Qian ; Shen, Li ; Feng, Xue ; Xiao, Yunhua ; Tao, Jiemeng ; Liang, Yili ; Yin, Huaqun ; Liu, Xueduan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-ced14a0ad8ec178fdf970d8f08462759337f07b8979123c41d088eb773ba69323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acidithiobacillus - drug effects</topic><topic>Acidithiobacillus - genetics</topic><topic>Acidithiobacillus - metabolism</topic><topic>Acidithiobacillus ferrooxidans</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Energy</topic><topic>Energy Metabolism - genetics</topic><topic>Environmental impact</topic><topic>Extraction processes</topic><topic>Ferrous Compounds - metabolism</topic><topic>Fluorides</topic><topic>Fluorides - toxicity</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genetic Engineering</topic><topic>Genetics and Molecular Biology of Industrial Organisms - Original Paper</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Inorganic Chemistry</topic><topic>Laboratories</topic><topic>Leaching</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Protein synthesis</topic><topic>Studies</topic><topic>Sulfur</topic><topic>Sulfur - metabolism</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Liyuan</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Feng, Xue</creatorcontrib><creatorcontrib>Xiao, Yunhua</creatorcontrib><creatorcontrib>Tao, Jiemeng</creatorcontrib><creatorcontrib>Liang, Yili</creatorcontrib><creatorcontrib>Yin, Huaqun</creatorcontrib><creatorcontrib>Liu, Xueduan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of industrial microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Liyuan</au><au>Li, Qian</au><au>Shen, Li</au><au>Feng, Xue</au><au>Xiao, Yunhua</au><au>Tao, Jiemeng</au><au>Liang, Yili</au><au>Yin, Huaqun</au><au>Liu, Xueduan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays</atitle><jtitle>Journal of industrial microbiology & biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>43</volume><issue>10</issue><spage>1441</spage><epage>1453</epage><pages>1441-1453</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>Abstract
Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S0 substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Oxford University Press</pub><pmid>27519020</pmid><doi>10.1007/s10295-016-1827-6</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-5435 |
ispartof | Journal of industrial microbiology & biotechnology, 2016-10, Vol.43 (10), p.1441-1453 |
issn | 1367-5435 1476-5535 |
language | eng |
recordid | cdi_proquest_miscellaneous_1827906093 |
source | Oxford Journals Open Access Collection; MEDLINE; SpringerLink Journals |
subjects | Acidithiobacillus - drug effects Acidithiobacillus - genetics Acidithiobacillus - metabolism Acidithiobacillus ferrooxidans Analysis Bacteria Biochemistry Bioinformatics Biomedical and Life Sciences Biotechnology Energy Energy Metabolism - genetics Environmental impact Extraction processes Ferrous Compounds - metabolism Fluorides Fluorides - toxicity Gene expression Gene Expression Profiling Genetic Engineering Genetics and Molecular Biology of Industrial Organisms - Original Paper Genomes Genomics Inorganic Chemistry Laboratories Leaching Life Sciences Metabolism Microbiology Microorganisms Minerals Oligonucleotide Array Sequence Analysis Oxidation Oxidation-Reduction Protein synthesis Studies Sulfur Sulfur - metabolism Uranium |
title | Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20fluoride-resistant%20regulation%20mechanism%20of%20Acidithiobacillus%20ferrooxidans%20ATCC%2023270%20based%20on%20whole%20genome%20microarrays&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Ma,%20Liyuan&rft.date=2016-10-01&rft.volume=43&rft.issue=10&rft.spage=1441&rft.epage=1453&rft.pages=1441-1453&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-016-1827-6&rft_dat=%3Cproquest_cross%3E4184894431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820266818&rft_id=info:pmid/27519020&rft_oup_id=10.1007/s10295-016-1827-6&rfr_iscdi=true |