Prostate health index (PHI) and prostate-specific antigen (PSA) predictive models for prostate cancer in the Chinese population and the role of digital rectal examination-estimated prostate volume
Purpose To investigate PSA- and PHI (prostate health index)-based models for prediction of prostate cancer (PCa) and the feasibility of using DRE-estimated prostate volume (DRE-PV) in the models. Methods This study included 569 Chinese men with PSA 4–10 ng/mL and non-suspicious DRE with transrectal...
Gespeichert in:
Veröffentlicht in: | International urology and nephrology 2016-10, Vol.48 (10), p.1631-1637 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1637 |
---|---|
container_issue | 10 |
container_start_page | 1631 |
container_title | International urology and nephrology |
container_volume | 48 |
creator | Chiu, Peter K. F. Roobol, Monique J. Teoh, Jeremy Y. Lee, Wai-Man Yip, Siu-Ying Hou, See-Ming Bangma, Chris H. Ng, Chi-Fai |
description | Purpose
To investigate PSA- and PHI (prostate health index)-based models for prediction of prostate cancer (PCa) and the feasibility of using DRE-estimated prostate volume (DRE-PV) in the models.
Methods
This study included 569 Chinese men with PSA 4–10 ng/mL and non-suspicious DRE with transrectal ultrasound (TRUS) 10-core prostate biopsies performed between April 2008 and July 2015. DRE-PV was estimated using 3 pre-defined classes: 25, 40, or 60 ml. The performance of PSA-based and PHI-based predictive models including age, DRE-PV, and TRUS prostate volume (TRUS-PV) was analyzed using logistic regression and area under the receiver operating curves (AUC), in both the whole cohort and the screening age group of 55–75.
Results
PCa and high-grade PCa (HGPCa) was diagnosed in 10.9 % (62/569) and 2.8 % (16/569) men, respectively. The performance of DRE-PV-based models was similar to TRUS-PV-based models. In the age group 55–75, the AUCs for PCa of PSA alone, PSA with DRE-PV and age, PHI alone, PHI with DRE-PV and age, and PHI with TRUS-PV and age were 0.54, 0.71, 0.76, 0.78, and 0.78, respectively. The corresponding AUCs for HGPCa were higher (0.60, 0.70, 0.85, 0.83, and 0.83). At 10 and 20 % risk threshold for PCa, 38.4 and 55.4 % biopsies could be avoided in the PHI-based model, respectively.
Conclusions
PHI had better performance over PSA-based models and could reduce unnecessary biopsies. A DRE-assessed PV can replace TRUS-assessed PV in multivariate prediction models to facilitate clinical use. |
doi_str_mv | 10.1007/s11255-016-1350-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827905117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1823033042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-cc15742365f5e72f51d52e266b71d68dbc0cf10783e870d16600502f8ec265af3</originalsourceid><addsrcrecordid>eNqNkt9qFDEUxoModl19AG8k4E17ET1JJpnZy7KoLRQsqNdDNnOymzKTWZNMad_PBzPTXasIglcHcn7nO3_yEfKawzsOUL9PnAulGHDNuFTAmidkwVUtmVBN9ZQsQAJnXAt5Ql6kdAMAqwbgOTkRtaxWSlcL8uM6jimbjHSHps876kOHd_T0-uLyjJrQ0f0xz9IerXfeltfstxgK8-X8rOSx8zb7W6TD2GGfqBvjYxW1JliMRZXmHdL1zgdMSPfjfupN9mN46DGn4tgjHR3t_NZn09OIdg54ZwYfHlCGKfuhiP4eit6O_TTgS_LMmT7hq2Nckm8fP3xdX7Crz58u1-dXzFagMrO2HKcSUiunsBZO8U4JFFpvat7ppttYsI5D3Uhsaui41gAKhGvQCq2Mk0tyetAt_b9PZZx28Mli35uA45Ra3oh6BYrz-n9QCVJCGWdJ3v6F3oxTDGWRmRJQKc1nih8oW3ZPEV27j-Ua8b7l0M5uaA9uaIsb2tkNbVNq3hyVp82A3WPFr-8vgDgAqaTCFuMfrf-p-hPnSMFJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822045612</pqid></control><display><type>article</type><title>Prostate health index (PHI) and prostate-specific antigen (PSA) predictive models for prostate cancer in the Chinese population and the role of digital rectal examination-estimated prostate volume</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chiu, Peter K. F. ; Roobol, Monique J. ; Teoh, Jeremy Y. ; Lee, Wai-Man ; Yip, Siu-Ying ; Hou, See-Ming ; Bangma, Chris H. ; Ng, Chi-Fai</creator><creatorcontrib>Chiu, Peter K. F. ; Roobol, Monique J. ; Teoh, Jeremy Y. ; Lee, Wai-Man ; Yip, Siu-Ying ; Hou, See-Ming ; Bangma, Chris H. ; Ng, Chi-Fai</creatorcontrib><description>Purpose
To investigate PSA- and PHI (prostate health index)-based models for prediction of prostate cancer (PCa) and the feasibility of using DRE-estimated prostate volume (DRE-PV) in the models.
Methods
This study included 569 Chinese men with PSA 4–10 ng/mL and non-suspicious DRE with transrectal ultrasound (TRUS) 10-core prostate biopsies performed between April 2008 and July 2015. DRE-PV was estimated using 3 pre-defined classes: 25, 40, or 60 ml. The performance of PSA-based and PHI-based predictive models including age, DRE-PV, and TRUS prostate volume (TRUS-PV) was analyzed using logistic regression and area under the receiver operating curves (AUC), in both the whole cohort and the screening age group of 55–75.
Results
PCa and high-grade PCa (HGPCa) was diagnosed in 10.9 % (62/569) and 2.8 % (16/569) men, respectively. The performance of DRE-PV-based models was similar to TRUS-PV-based models. In the age group 55–75, the AUCs for PCa of PSA alone, PSA with DRE-PV and age, PHI alone, PHI with DRE-PV and age, and PHI with TRUS-PV and age were 0.54, 0.71, 0.76, 0.78, and 0.78, respectively. The corresponding AUCs for HGPCa were higher (0.60, 0.70, 0.85, 0.83, and 0.83). At 10 and 20 % risk threshold for PCa, 38.4 and 55.4 % biopsies could be avoided in the PHI-based model, respectively.
Conclusions
PHI had better performance over PSA-based models and could reduce unnecessary biopsies. A DRE-assessed PV can replace TRUS-assessed PV in multivariate prediction models to facilitate clinical use.</description><identifier>ISSN: 0301-1623</identifier><identifier>EISSN: 1573-2584</identifier><identifier>DOI: 10.1007/s11255-016-1350-8</identifier><identifier>PMID: 27349564</identifier><identifier>CODEN: IURNAE</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aged ; China ; Digital Rectal Examination - methods ; Feasibility Studies ; Health Status Indicators ; Humans ; Male ; Medicine ; Medicine & Public Health ; Middle Aged ; Nephrology ; Organ Size ; Prostate - pathology ; Prostate-Specific Antigen - analysis ; Prostatic Neoplasms - diagnosis ; Risk Assessment - methods ; ROC Curve ; Urology ; Urology - Original Paper</subject><ispartof>International urology and nephrology, 2016-10, Vol.48 (10), p.1631-1637</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-cc15742365f5e72f51d52e266b71d68dbc0cf10783e870d16600502f8ec265af3</citedby><cites>FETCH-LOGICAL-c405t-cc15742365f5e72f51d52e266b71d68dbc0cf10783e870d16600502f8ec265af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11255-016-1350-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11255-016-1350-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27349564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, Peter K. F.</creatorcontrib><creatorcontrib>Roobol, Monique J.</creatorcontrib><creatorcontrib>Teoh, Jeremy Y.</creatorcontrib><creatorcontrib>Lee, Wai-Man</creatorcontrib><creatorcontrib>Yip, Siu-Ying</creatorcontrib><creatorcontrib>Hou, See-Ming</creatorcontrib><creatorcontrib>Bangma, Chris H.</creatorcontrib><creatorcontrib>Ng, Chi-Fai</creatorcontrib><title>Prostate health index (PHI) and prostate-specific antigen (PSA) predictive models for prostate cancer in the Chinese population and the role of digital rectal examination-estimated prostate volume</title><title>International urology and nephrology</title><addtitle>Int Urol Nephrol</addtitle><addtitle>Int Urol Nephrol</addtitle><description>Purpose
To investigate PSA- and PHI (prostate health index)-based models for prediction of prostate cancer (PCa) and the feasibility of using DRE-estimated prostate volume (DRE-PV) in the models.
Methods
This study included 569 Chinese men with PSA 4–10 ng/mL and non-suspicious DRE with transrectal ultrasound (TRUS) 10-core prostate biopsies performed between April 2008 and July 2015. DRE-PV was estimated using 3 pre-defined classes: 25, 40, or 60 ml. The performance of PSA-based and PHI-based predictive models including age, DRE-PV, and TRUS prostate volume (TRUS-PV) was analyzed using logistic regression and area under the receiver operating curves (AUC), in both the whole cohort and the screening age group of 55–75.
Results
PCa and high-grade PCa (HGPCa) was diagnosed in 10.9 % (62/569) and 2.8 % (16/569) men, respectively. The performance of DRE-PV-based models was similar to TRUS-PV-based models. In the age group 55–75, the AUCs for PCa of PSA alone, PSA with DRE-PV and age, PHI alone, PHI with DRE-PV and age, and PHI with TRUS-PV and age were 0.54, 0.71, 0.76, 0.78, and 0.78, respectively. The corresponding AUCs for HGPCa were higher (0.60, 0.70, 0.85, 0.83, and 0.83). At 10 and 20 % risk threshold for PCa, 38.4 and 55.4 % biopsies could be avoided in the PHI-based model, respectively.
Conclusions
PHI had better performance over PSA-based models and could reduce unnecessary biopsies. A DRE-assessed PV can replace TRUS-assessed PV in multivariate prediction models to facilitate clinical use.</description><subject>Aged</subject><subject>China</subject><subject>Digital Rectal Examination - methods</subject><subject>Feasibility Studies</subject><subject>Health Status Indicators</subject><subject>Humans</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Middle Aged</subject><subject>Nephrology</subject><subject>Organ Size</subject><subject>Prostate - pathology</subject><subject>Prostate-Specific Antigen - analysis</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>Risk Assessment - methods</subject><subject>ROC Curve</subject><subject>Urology</subject><subject>Urology - Original Paper</subject><issn>0301-1623</issn><issn>1573-2584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkt9qFDEUxoModl19AG8k4E17ET1JJpnZy7KoLRQsqNdDNnOymzKTWZNMad_PBzPTXasIglcHcn7nO3_yEfKawzsOUL9PnAulGHDNuFTAmidkwVUtmVBN9ZQsQAJnXAt5Ql6kdAMAqwbgOTkRtaxWSlcL8uM6jimbjHSHps876kOHd_T0-uLyjJrQ0f0xz9IerXfeltfstxgK8-X8rOSx8zb7W6TD2GGfqBvjYxW1JliMRZXmHdL1zgdMSPfjfupN9mN46DGn4tgjHR3t_NZn09OIdg54ZwYfHlCGKfuhiP4eit6O_TTgS_LMmT7hq2Nckm8fP3xdX7Crz58u1-dXzFagMrO2HKcSUiunsBZO8U4JFFpvat7ppttYsI5D3Uhsaui41gAKhGvQCq2Mk0tyetAt_b9PZZx28Mli35uA45Ra3oh6BYrz-n9QCVJCGWdJ3v6F3oxTDGWRmRJQKc1nih8oW3ZPEV27j-Ua8b7l0M5uaA9uaIsb2tkNbVNq3hyVp82A3WPFr-8vgDgAqaTCFuMfrf-p-hPnSMFJ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Chiu, Peter K. F.</creator><creator>Roobol, Monique J.</creator><creator>Teoh, Jeremy Y.</creator><creator>Lee, Wai-Man</creator><creator>Yip, Siu-Ying</creator><creator>Hou, See-Ming</creator><creator>Bangma, Chris H.</creator><creator>Ng, Chi-Fai</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20161001</creationdate><title>Prostate health index (PHI) and prostate-specific antigen (PSA) predictive models for prostate cancer in the Chinese population and the role of digital rectal examination-estimated prostate volume</title><author>Chiu, Peter K. F. ; Roobol, Monique J. ; Teoh, Jeremy Y. ; Lee, Wai-Man ; Yip, Siu-Ying ; Hou, See-Ming ; Bangma, Chris H. ; Ng, Chi-Fai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-cc15742365f5e72f51d52e266b71d68dbc0cf10783e870d16600502f8ec265af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aged</topic><topic>China</topic><topic>Digital Rectal Examination - methods</topic><topic>Feasibility Studies</topic><topic>Health Status Indicators</topic><topic>Humans</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Middle Aged</topic><topic>Nephrology</topic><topic>Organ Size</topic><topic>Prostate - pathology</topic><topic>Prostate-Specific Antigen - analysis</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>Risk Assessment - methods</topic><topic>ROC Curve</topic><topic>Urology</topic><topic>Urology - Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Peter K. F.</creatorcontrib><creatorcontrib>Roobol, Monique J.</creatorcontrib><creatorcontrib>Teoh, Jeremy Y.</creatorcontrib><creatorcontrib>Lee, Wai-Man</creatorcontrib><creatorcontrib>Yip, Siu-Ying</creatorcontrib><creatorcontrib>Hou, See-Ming</creatorcontrib><creatorcontrib>Bangma, Chris H.</creatorcontrib><creatorcontrib>Ng, Chi-Fai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>International urology and nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Peter K. F.</au><au>Roobol, Monique J.</au><au>Teoh, Jeremy Y.</au><au>Lee, Wai-Man</au><au>Yip, Siu-Ying</au><au>Hou, See-Ming</au><au>Bangma, Chris H.</au><au>Ng, Chi-Fai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prostate health index (PHI) and prostate-specific antigen (PSA) predictive models for prostate cancer in the Chinese population and the role of digital rectal examination-estimated prostate volume</atitle><jtitle>International urology and nephrology</jtitle><stitle>Int Urol Nephrol</stitle><addtitle>Int Urol Nephrol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>48</volume><issue>10</issue><spage>1631</spage><epage>1637</epage><pages>1631-1637</pages><issn>0301-1623</issn><eissn>1573-2584</eissn><coden>IURNAE</coden><abstract>Purpose
To investigate PSA- and PHI (prostate health index)-based models for prediction of prostate cancer (PCa) and the feasibility of using DRE-estimated prostate volume (DRE-PV) in the models.
Methods
This study included 569 Chinese men with PSA 4–10 ng/mL and non-suspicious DRE with transrectal ultrasound (TRUS) 10-core prostate biopsies performed between April 2008 and July 2015. DRE-PV was estimated using 3 pre-defined classes: 25, 40, or 60 ml. The performance of PSA-based and PHI-based predictive models including age, DRE-PV, and TRUS prostate volume (TRUS-PV) was analyzed using logistic regression and area under the receiver operating curves (AUC), in both the whole cohort and the screening age group of 55–75.
Results
PCa and high-grade PCa (HGPCa) was diagnosed in 10.9 % (62/569) and 2.8 % (16/569) men, respectively. The performance of DRE-PV-based models was similar to TRUS-PV-based models. In the age group 55–75, the AUCs for PCa of PSA alone, PSA with DRE-PV and age, PHI alone, PHI with DRE-PV and age, and PHI with TRUS-PV and age were 0.54, 0.71, 0.76, 0.78, and 0.78, respectively. The corresponding AUCs for HGPCa were higher (0.60, 0.70, 0.85, 0.83, and 0.83). At 10 and 20 % risk threshold for PCa, 38.4 and 55.4 % biopsies could be avoided in the PHI-based model, respectively.
Conclusions
PHI had better performance over PSA-based models and could reduce unnecessary biopsies. A DRE-assessed PV can replace TRUS-assessed PV in multivariate prediction models to facilitate clinical use.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>27349564</pmid><doi>10.1007/s11255-016-1350-8</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-1623 |
ispartof | International urology and nephrology, 2016-10, Vol.48 (10), p.1631-1637 |
issn | 0301-1623 1573-2584 |
language | eng |
recordid | cdi_proquest_miscellaneous_1827905117 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Aged China Digital Rectal Examination - methods Feasibility Studies Health Status Indicators Humans Male Medicine Medicine & Public Health Middle Aged Nephrology Organ Size Prostate - pathology Prostate-Specific Antigen - analysis Prostatic Neoplasms - diagnosis Risk Assessment - methods ROC Curve Urology Urology - Original Paper |
title | Prostate health index (PHI) and prostate-specific antigen (PSA) predictive models for prostate cancer in the Chinese population and the role of digital rectal examination-estimated prostate volume |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prostate%20health%20index%20(PHI)%20and%20prostate-specific%20antigen%20(PSA)%20predictive%20models%20for%20prostate%20cancer%20in%20the%20Chinese%20population%20and%20the%20role%20of%20digital%20rectal%20examination-estimated%20prostate%20volume&rft.jtitle=International%20urology%20and%20nephrology&rft.au=Chiu,%20Peter%20K.%20F.&rft.date=2016-10-01&rft.volume=48&rft.issue=10&rft.spage=1631&rft.epage=1637&rft.pages=1631-1637&rft.issn=0301-1623&rft.eissn=1573-2584&rft.coden=IURNAE&rft_id=info:doi/10.1007/s11255-016-1350-8&rft_dat=%3Cproquest_cross%3E1823033042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822045612&rft_id=info:pmid/27349564&rfr_iscdi=true |