In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst

Fischer–Tropsch synthesis is a heterogeneous catalytic reaction that creates approximately 2% of the world's fuel. It involves the synthesis of linear hydrocarbon molecules from a gaseous mixture of carbon monoxide and hydrogen at high pressures (from a few to tens of bars) and high temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2016-10, Vol.8 (10), p.929-934
Hauptverfasser: Navarro, Violeta, van Spronsen, Matthijs A., Frenken, Joost W. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 934
container_issue 10
container_start_page 929
container_title Nature chemistry
container_volume 8
creator Navarro, Violeta
van Spronsen, Matthijs A.
Frenken, Joost W. M.
description Fischer–Tropsch synthesis is a heterogeneous catalytic reaction that creates approximately 2% of the world's fuel. It involves the synthesis of linear hydrocarbon molecules from a gaseous mixture of carbon monoxide and hydrogen at high pressures (from a few to tens of bars) and high temperatures (200–350 °C). To gain further insight into the fundamental mechanisms of this industrial process, we have used a purpose-built scanning tunnelling microscope to monitor a cobalt model catalyst under reaction conditions. We show that, after 30 minutes of reaction, the terraces of the cobalt catalyst are covered by parallel arrays of stripes. We propose that the stripes are formed by the self-assembly of linear hydrocarbon product molecules. Surprisingly, the width of the stripes corresponds to molecules that are 14 or 15 carbon atoms long. We introduce a simple model that explains the accumulation of such long molecules by describing their monomer-by-monomer synthesis and explicitly accounting for their thermal desorption. During the Fischer-Tropsch catalytic reaction, alkanes are synthesized from carbon monoxide and hydrogen at high pressure and temperature. Now it is shown using scanning tunnelling imaging of a cobalt surface during reaction that linear alkane product molecules of a specific length self-assemble on terraces, facilitating the desorption of new product molecules created at step sites.
doi_str_mv 10.1038/nchem.2613
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827900996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1823038203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-d35bec7fbb523d551d6abac77bbf2b6989ed47f0214ae1d16fb184b0656172033</originalsourceid><addsrcrecordid>eNqNkctKw0AUhgdRbK1ufAAZcCNKdC6ZmWQpxWqh4Kauw9xiW5JMnUmE7nwH39AncWprEd24Ogf-j_9cfgBOMbrGiGY3jZ7Z-ppwTPdAHwvGkpSm-f6up6gHjkJYIMQZxfwQ9IjgTGQ86wM5bmCYtx10Klj_Ktu5a6ArYbBVmcgQbK0qa-BsZbzT0quojuYhDvQfb-9T75axh0vvTKfbAKMqoXZKVi3UspXVKrTH4KCUVbAn2zoAT6O76fAhmTzej4e3k0SnBLeJoUxZLUqlGKGGMWy4VFILoVRJFM-z3JpUlIjgVFpsMC8VzlIVT-JYEETpAFxsfOM2L50NbVHHRW1Vyca6LhQ4IyJHKM_5f1AaH7txPf-FLlznm3jImiI0F0ysqcsNpb0LwduyWPp5Lf2qwKhYZ1R8ZVSsM4rw2dayU7U1O_Q7lAhcbYAQpebZ-h8z_9p9AhpWnPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822397573</pqid></control><display><type>article</type><title>In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Navarro, Violeta ; van Spronsen, Matthijs A. ; Frenken, Joost W. M.</creator><creatorcontrib>Navarro, Violeta ; van Spronsen, Matthijs A. ; Frenken, Joost W. M.</creatorcontrib><description>Fischer–Tropsch synthesis is a heterogeneous catalytic reaction that creates approximately 2% of the world's fuel. It involves the synthesis of linear hydrocarbon molecules from a gaseous mixture of carbon monoxide and hydrogen at high pressures (from a few to tens of bars) and high temperatures (200–350 °C). To gain further insight into the fundamental mechanisms of this industrial process, we have used a purpose-built scanning tunnelling microscope to monitor a cobalt model catalyst under reaction conditions. We show that, after 30 minutes of reaction, the terraces of the cobalt catalyst are covered by parallel arrays of stripes. We propose that the stripes are formed by the self-assembly of linear hydrocarbon product molecules. Surprisingly, the width of the stripes corresponds to molecules that are 14 or 15 carbon atoms long. We introduce a simple model that explains the accumulation of such long molecules by describing their monomer-by-monomer synthesis and explicitly accounting for their thermal desorption. During the Fischer-Tropsch catalytic reaction, alkanes are synthesized from carbon monoxide and hydrogen at high pressure and temperature. Now it is shown using scanning tunnelling imaging of a cobalt surface during reaction that linear alkane product molecules of a specific length self-assemble on terraces, facilitating the desorption of new product molecules created at step sites.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2613</identifier><identifier>PMID: 27657868</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/58 ; 147/138 ; 639/638/77/887 ; 639/925/357 ; Analytical Chemistry ; Biochemistry ; Carbon monoxide ; Chemistry ; Chemistry/Food Science ; Cobalt ; Electrons ; Gases ; High temperature ; Hydrocarbons ; Hydrogen ; Inorganic Chemistry ; Organic Chemistry ; Physical Chemistry ; Topography</subject><ispartof>Nature chemistry, 2016-10, Vol.8 (10), p.929-934</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Oct 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-d35bec7fbb523d551d6abac77bbf2b6989ed47f0214ae1d16fb184b0656172033</citedby><cites>FETCH-LOGICAL-c421t-d35bec7fbb523d551d6abac77bbf2b6989ed47f0214ae1d16fb184b0656172033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.2613$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.2613$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27657868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navarro, Violeta</creatorcontrib><creatorcontrib>van Spronsen, Matthijs A.</creatorcontrib><creatorcontrib>Frenken, Joost W. M.</creatorcontrib><title>In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Fischer–Tropsch synthesis is a heterogeneous catalytic reaction that creates approximately 2% of the world's fuel. It involves the synthesis of linear hydrocarbon molecules from a gaseous mixture of carbon monoxide and hydrogen at high pressures (from a few to tens of bars) and high temperatures (200–350 °C). To gain further insight into the fundamental mechanisms of this industrial process, we have used a purpose-built scanning tunnelling microscope to monitor a cobalt model catalyst under reaction conditions. We show that, after 30 minutes of reaction, the terraces of the cobalt catalyst are covered by parallel arrays of stripes. We propose that the stripes are formed by the self-assembly of linear hydrocarbon product molecules. Surprisingly, the width of the stripes corresponds to molecules that are 14 or 15 carbon atoms long. We introduce a simple model that explains the accumulation of such long molecules by describing their monomer-by-monomer synthesis and explicitly accounting for their thermal desorption. During the Fischer-Tropsch catalytic reaction, alkanes are synthesized from carbon monoxide and hydrogen at high pressure and temperature. Now it is shown using scanning tunnelling imaging of a cobalt surface during reaction that linear alkane product molecules of a specific length self-assemble on terraces, facilitating the desorption of new product molecules created at step sites.</description><subject>140/58</subject><subject>147/138</subject><subject>639/638/77/887</subject><subject>639/925/357</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Carbon monoxide</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Cobalt</subject><subject>Electrons</subject><subject>Gases</subject><subject>High temperature</subject><subject>Hydrocarbons</subject><subject>Hydrogen</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Topography</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkctKw0AUhgdRbK1ufAAZcCNKdC6ZmWQpxWqh4Kauw9xiW5JMnUmE7nwH39AncWprEd24Ogf-j_9cfgBOMbrGiGY3jZ7Z-ppwTPdAHwvGkpSm-f6up6gHjkJYIMQZxfwQ9IjgTGQ86wM5bmCYtx10Klj_Ktu5a6ArYbBVmcgQbK0qa-BsZbzT0quojuYhDvQfb-9T75axh0vvTKfbAKMqoXZKVi3UspXVKrTH4KCUVbAn2zoAT6O76fAhmTzej4e3k0SnBLeJoUxZLUqlGKGGMWy4VFILoVRJFM-z3JpUlIjgVFpsMC8VzlIVT-JYEETpAFxsfOM2L50NbVHHRW1Vyca6LhQ4IyJHKM_5f1AaH7txPf-FLlznm3jImiI0F0ysqcsNpb0LwduyWPp5Lf2qwKhYZ1R8ZVSsM4rw2dayU7U1O_Q7lAhcbYAQpebZ-h8z_9p9AhpWnPc</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Navarro, Violeta</creator><creator>van Spronsen, Matthijs A.</creator><creator>Frenken, Joost W. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20161001</creationdate><title>In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst</title><author>Navarro, Violeta ; van Spronsen, Matthijs A. ; Frenken, Joost W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-d35bec7fbb523d551d6abac77bbf2b6989ed47f0214ae1d16fb184b0656172033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/58</topic><topic>147/138</topic><topic>639/638/77/887</topic><topic>639/925/357</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Carbon monoxide</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Cobalt</topic><topic>Electrons</topic><topic>Gases</topic><topic>High temperature</topic><topic>Hydrocarbons</topic><topic>Hydrogen</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarro, Violeta</creatorcontrib><creatorcontrib>van Spronsen, Matthijs A.</creatorcontrib><creatorcontrib>Frenken, Joost W. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarro, Violeta</au><au>van Spronsen, Matthijs A.</au><au>Frenken, Joost W. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>8</volume><issue>10</issue><spage>929</spage><epage>934</epage><pages>929-934</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Fischer–Tropsch synthesis is a heterogeneous catalytic reaction that creates approximately 2% of the world's fuel. It involves the synthesis of linear hydrocarbon molecules from a gaseous mixture of carbon monoxide and hydrogen at high pressures (from a few to tens of bars) and high temperatures (200–350 °C). To gain further insight into the fundamental mechanisms of this industrial process, we have used a purpose-built scanning tunnelling microscope to monitor a cobalt model catalyst under reaction conditions. We show that, after 30 minutes of reaction, the terraces of the cobalt catalyst are covered by parallel arrays of stripes. We propose that the stripes are formed by the self-assembly of linear hydrocarbon product molecules. Surprisingly, the width of the stripes corresponds to molecules that are 14 or 15 carbon atoms long. We introduce a simple model that explains the accumulation of such long molecules by describing their monomer-by-monomer synthesis and explicitly accounting for their thermal desorption. During the Fischer-Tropsch catalytic reaction, alkanes are synthesized from carbon monoxide and hydrogen at high pressure and temperature. Now it is shown using scanning tunnelling imaging of a cobalt surface during reaction that linear alkane product molecules of a specific length self-assemble on terraces, facilitating the desorption of new product molecules created at step sites.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27657868</pmid><doi>10.1038/nchem.2613</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2016-10, Vol.8 (10), p.929-934
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_1827900996
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 140/58
147/138
639/638/77/887
639/925/357
Analytical Chemistry
Biochemistry
Carbon monoxide
Chemistry
Chemistry/Food Science
Cobalt
Electrons
Gases
High temperature
Hydrocarbons
Hydrogen
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Topography
title In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20observation%20of%20self-assembled%20hydrocarbon%20Fischer%E2%80%93Tropsch%20products%20on%20a%20cobalt%20catalyst&rft.jtitle=Nature%20chemistry&rft.au=Navarro,%20Violeta&rft.date=2016-10-01&rft.volume=8&rft.issue=10&rft.spage=929&rft.epage=934&rft.pages=929-934&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2613&rft_dat=%3Cproquest_cross%3E1823038203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822397573&rft_id=info:pmid/27657868&rfr_iscdi=true