Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition
The application of a potent lactate dehydrogenase (LDHA) inhibitor GNE-140 on pancreatic cancer cells revealed that resistance to GNE-140 is attributable to an AMPK–mTOR–S6K-mediated switch in utilization from glycolysis to oxidative phosphorylation. Metabolic reprogramming in tumors represents a po...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2016-10, Vol.12 (10), p.779-786 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 10 |
container_start_page | 779 |
container_title | Nature chemical biology |
container_volume | 12 |
creator | Boudreau, Aaron Purkey, Hans E Hitz, Anna Robarge, Kirk Peterson, David Labadie, Sharada Kwong, Mandy Hong, Rebecca Gao, Min Del Nagro, Christopher Pusapati, Raju Ma, Shuguang Salphati, Laurent Pang, Jodie Zhou, Aihe Lai, Tommy Li, Yingjie Chen, Zhongguo Wei, Binqing Yen, Ivana Sideris, Steve McCleland, Mark Firestein, Ron Corson, Laura Vanderbilt, Alex Williams, Simon Daemen, Anneleen Belvin, Marcia Eigenbrot, Charles Jackson, Peter K Malek, Shiva Hatzivassiliou, Georgia Sampath, Deepak Evangelista, Marie O'Brien, Thomas |
description | The application of a potent lactate dehydrogenase (LDHA) inhibitor GNE-140 on pancreatic cancer cells revealed that resistance to GNE-140 is attributable to an AMPK–mTOR–S6K-mediated switch in utilization from glycolysis to oxidative phosphorylation.
Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth
in vitro
and
in vivo
. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK–mTOR–S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK–S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition. |
doi_str_mv | 10.1038/nchembio.2143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827900985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1827900985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-18b52dba9b757c67121a0d30f134dea5547f703b3791d3d31f54e4193ebcc6383</originalsourceid><addsrcrecordid>eNqN0TtLBDEUBeAgio_V0lYGbGxmzXMyKcU3rGih9ZDHHY3MZtYkU-y_d9ZVEbGwyoV8nMvlIHRI8JRgVp8G-wJz4_spJZxtoF0iBC05r9Tm9yzwDtpL6RVjVlWk3kY7VHKpJGe76OEOsjZ9522x6HTK3vq8LIbgIC58SIUPQWcodHCFtm-Dj-CKCMmnrIOFIvfF7OLmbGQv3vjs-7CPtlrdJTj4fCfo6ery8fymnN1f356fzUrLhcolqY2gzmhlpJC2koQSjR3DLWHcgRaCy1ZiZphUxDHHSCs4cKIYGGsrVrMJOlnnLmL_NkDKzdwnC12nA_RDakhNpcJY1eI_lPJKUMpGevyLvvZDDOMhH4opKWsyqnKtbOxTitA2i-jnOi4bgptVK81XK82qldEffaYOZg7uW3_VMILpGqTxKzxD_LH2z8R3nzuYXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822397781</pqid></control><display><type>article</type><title>Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Boudreau, Aaron ; Purkey, Hans E ; Hitz, Anna ; Robarge, Kirk ; Peterson, David ; Labadie, Sharada ; Kwong, Mandy ; Hong, Rebecca ; Gao, Min ; Del Nagro, Christopher ; Pusapati, Raju ; Ma, Shuguang ; Salphati, Laurent ; Pang, Jodie ; Zhou, Aihe ; Lai, Tommy ; Li, Yingjie ; Chen, Zhongguo ; Wei, Binqing ; Yen, Ivana ; Sideris, Steve ; McCleland, Mark ; Firestein, Ron ; Corson, Laura ; Vanderbilt, Alex ; Williams, Simon ; Daemen, Anneleen ; Belvin, Marcia ; Eigenbrot, Charles ; Jackson, Peter K ; Malek, Shiva ; Hatzivassiliou, Georgia ; Sampath, Deepak ; Evangelista, Marie ; O'Brien, Thomas</creator><creatorcontrib>Boudreau, Aaron ; Purkey, Hans E ; Hitz, Anna ; Robarge, Kirk ; Peterson, David ; Labadie, Sharada ; Kwong, Mandy ; Hong, Rebecca ; Gao, Min ; Del Nagro, Christopher ; Pusapati, Raju ; Ma, Shuguang ; Salphati, Laurent ; Pang, Jodie ; Zhou, Aihe ; Lai, Tommy ; Li, Yingjie ; Chen, Zhongguo ; Wei, Binqing ; Yen, Ivana ; Sideris, Steve ; McCleland, Mark ; Firestein, Ron ; Corson, Laura ; Vanderbilt, Alex ; Williams, Simon ; Daemen, Anneleen ; Belvin, Marcia ; Eigenbrot, Charles ; Jackson, Peter K ; Malek, Shiva ; Hatzivassiliou, Georgia ; Sampath, Deepak ; Evangelista, Marie ; O'Brien, Thomas</creatorcontrib><description>The application of a potent lactate dehydrogenase (LDHA) inhibitor GNE-140 on pancreatic cancer cells revealed that resistance to GNE-140 is attributable to an AMPK–mTOR–S6K-mediated switch in utilization from glycolysis to oxidative phosphorylation.
Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth
in vitro
and
in vivo
. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK–mTOR–S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK–S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.2143</identifier><identifier>PMID: 27479743</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/106 ; 13/31 ; 631/67/1059 ; 631/80/86 ; 631/92/1643 ; 631/92/613 ; 82/58 ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cancer therapies ; Cell Biology ; Cell Death - drug effects ; Cell Line, Tumor ; Cell Plasticity - drug effects ; Cell Proliferation - drug effects ; Chemistry ; Chemistry/Food Science ; Dehydrogenase ; Dose-Response Relationship, Drug ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Humans ; Inhibition ; Inhibitors ; L-Lactate Dehydrogenase - antagonists & inhibitors ; L-Lactate Dehydrogenase - metabolism ; Metabolism ; Models, Molecular ; Molecular biology ; Molecular Structure ; Pyridones - chemistry ; Pyridones - pharmacology ; Signal transduction ; Structure-Activity Relationship ; Thiophenes - chemistry ; Thiophenes - pharmacology ; Tumors</subject><ispartof>Nature chemical biology, 2016-10, Vol.12 (10), p.779-786</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>Copyright Nature Publishing Group Oct 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-18b52dba9b757c67121a0d30f134dea5547f703b3791d3d31f54e4193ebcc6383</citedby><cites>FETCH-LOGICAL-c459t-18b52dba9b757c67121a0d30f134dea5547f703b3791d3d31f54e4193ebcc6383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.2143$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.2143$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27479743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boudreau, Aaron</creatorcontrib><creatorcontrib>Purkey, Hans E</creatorcontrib><creatorcontrib>Hitz, Anna</creatorcontrib><creatorcontrib>Robarge, Kirk</creatorcontrib><creatorcontrib>Peterson, David</creatorcontrib><creatorcontrib>Labadie, Sharada</creatorcontrib><creatorcontrib>Kwong, Mandy</creatorcontrib><creatorcontrib>Hong, Rebecca</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Del Nagro, Christopher</creatorcontrib><creatorcontrib>Pusapati, Raju</creatorcontrib><creatorcontrib>Ma, Shuguang</creatorcontrib><creatorcontrib>Salphati, Laurent</creatorcontrib><creatorcontrib>Pang, Jodie</creatorcontrib><creatorcontrib>Zhou, Aihe</creatorcontrib><creatorcontrib>Lai, Tommy</creatorcontrib><creatorcontrib>Li, Yingjie</creatorcontrib><creatorcontrib>Chen, Zhongguo</creatorcontrib><creatorcontrib>Wei, Binqing</creatorcontrib><creatorcontrib>Yen, Ivana</creatorcontrib><creatorcontrib>Sideris, Steve</creatorcontrib><creatorcontrib>McCleland, Mark</creatorcontrib><creatorcontrib>Firestein, Ron</creatorcontrib><creatorcontrib>Corson, Laura</creatorcontrib><creatorcontrib>Vanderbilt, Alex</creatorcontrib><creatorcontrib>Williams, Simon</creatorcontrib><creatorcontrib>Daemen, Anneleen</creatorcontrib><creatorcontrib>Belvin, Marcia</creatorcontrib><creatorcontrib>Eigenbrot, Charles</creatorcontrib><creatorcontrib>Jackson, Peter K</creatorcontrib><creatorcontrib>Malek, Shiva</creatorcontrib><creatorcontrib>Hatzivassiliou, Georgia</creatorcontrib><creatorcontrib>Sampath, Deepak</creatorcontrib><creatorcontrib>Evangelista, Marie</creatorcontrib><creatorcontrib>O'Brien, Thomas</creatorcontrib><title>Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>The application of a potent lactate dehydrogenase (LDHA) inhibitor GNE-140 on pancreatic cancer cells revealed that resistance to GNE-140 is attributable to an AMPK–mTOR–S6K-mediated switch in utilization from glycolysis to oxidative phosphorylation.
Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth
in vitro
and
in vivo
. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK–mTOR–S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK–S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.</description><subject>13/106</subject><subject>13/31</subject><subject>631/67/1059</subject><subject>631/80/86</subject><subject>631/92/1643</subject><subject>631/92/613</subject><subject>82/58</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cancer therapies</subject><subject>Cell Biology</subject><subject>Cell Death - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Plasticity - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Dehydrogenase</subject><subject>Dose-Response Relationship, Drug</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Inhibitors</subject><subject>L-Lactate Dehydrogenase - antagonists & inhibitors</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>Metabolism</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Structure</subject><subject>Pyridones - chemistry</subject><subject>Pyridones - pharmacology</subject><subject>Signal transduction</subject><subject>Structure-Activity Relationship</subject><subject>Thiophenes - chemistry</subject><subject>Thiophenes - pharmacology</subject><subject>Tumors</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0TtLBDEUBeAgio_V0lYGbGxmzXMyKcU3rGih9ZDHHY3MZtYkU-y_d9ZVEbGwyoV8nMvlIHRI8JRgVp8G-wJz4_spJZxtoF0iBC05r9Tm9yzwDtpL6RVjVlWk3kY7VHKpJGe76OEOsjZ9522x6HTK3vq8LIbgIC58SIUPQWcodHCFtm-Dj-CKCMmnrIOFIvfF7OLmbGQv3vjs-7CPtlrdJTj4fCfo6ery8fymnN1f356fzUrLhcolqY2gzmhlpJC2koQSjR3DLWHcgRaCy1ZiZphUxDHHSCs4cKIYGGsrVrMJOlnnLmL_NkDKzdwnC12nA_RDakhNpcJY1eI_lPJKUMpGevyLvvZDDOMhH4opKWsyqnKtbOxTitA2i-jnOi4bgptVK81XK82qldEffaYOZg7uW3_VMILpGqTxKzxD_LH2z8R3nzuYXQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Boudreau, Aaron</creator><creator>Purkey, Hans E</creator><creator>Hitz, Anna</creator><creator>Robarge, Kirk</creator><creator>Peterson, David</creator><creator>Labadie, Sharada</creator><creator>Kwong, Mandy</creator><creator>Hong, Rebecca</creator><creator>Gao, Min</creator><creator>Del Nagro, Christopher</creator><creator>Pusapati, Raju</creator><creator>Ma, Shuguang</creator><creator>Salphati, Laurent</creator><creator>Pang, Jodie</creator><creator>Zhou, Aihe</creator><creator>Lai, Tommy</creator><creator>Li, Yingjie</creator><creator>Chen, Zhongguo</creator><creator>Wei, Binqing</creator><creator>Yen, Ivana</creator><creator>Sideris, Steve</creator><creator>McCleland, Mark</creator><creator>Firestein, Ron</creator><creator>Corson, Laura</creator><creator>Vanderbilt, Alex</creator><creator>Williams, Simon</creator><creator>Daemen, Anneleen</creator><creator>Belvin, Marcia</creator><creator>Eigenbrot, Charles</creator><creator>Jackson, Peter K</creator><creator>Malek, Shiva</creator><creator>Hatzivassiliou, Georgia</creator><creator>Sampath, Deepak</creator><creator>Evangelista, Marie</creator><creator>O'Brien, Thomas</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20161001</creationdate><title>Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition</title><author>Boudreau, Aaron ; Purkey, Hans E ; Hitz, Anna ; Robarge, Kirk ; Peterson, David ; Labadie, Sharada ; Kwong, Mandy ; Hong, Rebecca ; Gao, Min ; Del Nagro, Christopher ; Pusapati, Raju ; Ma, Shuguang ; Salphati, Laurent ; Pang, Jodie ; Zhou, Aihe ; Lai, Tommy ; Li, Yingjie ; Chen, Zhongguo ; Wei, Binqing ; Yen, Ivana ; Sideris, Steve ; McCleland, Mark ; Firestein, Ron ; Corson, Laura ; Vanderbilt, Alex ; Williams, Simon ; Daemen, Anneleen ; Belvin, Marcia ; Eigenbrot, Charles ; Jackson, Peter K ; Malek, Shiva ; Hatzivassiliou, Georgia ; Sampath, Deepak ; Evangelista, Marie ; O'Brien, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-18b52dba9b757c67121a0d30f134dea5547f703b3791d3d31f54e4193ebcc6383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/106</topic><topic>13/31</topic><topic>631/67/1059</topic><topic>631/80/86</topic><topic>631/92/1643</topic><topic>631/92/613</topic><topic>82/58</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cancer therapies</topic><topic>Cell Biology</topic><topic>Cell Death - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Plasticity - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Dehydrogenase</topic><topic>Dose-Response Relationship, Drug</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Inhibitors</topic><topic>L-Lactate Dehydrogenase - antagonists & inhibitors</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>Metabolism</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Structure</topic><topic>Pyridones - chemistry</topic><topic>Pyridones - pharmacology</topic><topic>Signal transduction</topic><topic>Structure-Activity Relationship</topic><topic>Thiophenes - chemistry</topic><topic>Thiophenes - pharmacology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boudreau, Aaron</creatorcontrib><creatorcontrib>Purkey, Hans E</creatorcontrib><creatorcontrib>Hitz, Anna</creatorcontrib><creatorcontrib>Robarge, Kirk</creatorcontrib><creatorcontrib>Peterson, David</creatorcontrib><creatorcontrib>Labadie, Sharada</creatorcontrib><creatorcontrib>Kwong, Mandy</creatorcontrib><creatorcontrib>Hong, Rebecca</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Del Nagro, Christopher</creatorcontrib><creatorcontrib>Pusapati, Raju</creatorcontrib><creatorcontrib>Ma, Shuguang</creatorcontrib><creatorcontrib>Salphati, Laurent</creatorcontrib><creatorcontrib>Pang, Jodie</creatorcontrib><creatorcontrib>Zhou, Aihe</creatorcontrib><creatorcontrib>Lai, Tommy</creatorcontrib><creatorcontrib>Li, Yingjie</creatorcontrib><creatorcontrib>Chen, Zhongguo</creatorcontrib><creatorcontrib>Wei, Binqing</creatorcontrib><creatorcontrib>Yen, Ivana</creatorcontrib><creatorcontrib>Sideris, Steve</creatorcontrib><creatorcontrib>McCleland, Mark</creatorcontrib><creatorcontrib>Firestein, Ron</creatorcontrib><creatorcontrib>Corson, Laura</creatorcontrib><creatorcontrib>Vanderbilt, Alex</creatorcontrib><creatorcontrib>Williams, Simon</creatorcontrib><creatorcontrib>Daemen, Anneleen</creatorcontrib><creatorcontrib>Belvin, Marcia</creatorcontrib><creatorcontrib>Eigenbrot, Charles</creatorcontrib><creatorcontrib>Jackson, Peter K</creatorcontrib><creatorcontrib>Malek, Shiva</creatorcontrib><creatorcontrib>Hatzivassiliou, Georgia</creatorcontrib><creatorcontrib>Sampath, Deepak</creatorcontrib><creatorcontrib>Evangelista, Marie</creatorcontrib><creatorcontrib>O'Brien, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boudreau, Aaron</au><au>Purkey, Hans E</au><au>Hitz, Anna</au><au>Robarge, Kirk</au><au>Peterson, David</au><au>Labadie, Sharada</au><au>Kwong, Mandy</au><au>Hong, Rebecca</au><au>Gao, Min</au><au>Del Nagro, Christopher</au><au>Pusapati, Raju</au><au>Ma, Shuguang</au><au>Salphati, Laurent</au><au>Pang, Jodie</au><au>Zhou, Aihe</au><au>Lai, Tommy</au><au>Li, Yingjie</au><au>Chen, Zhongguo</au><au>Wei, Binqing</au><au>Yen, Ivana</au><au>Sideris, Steve</au><au>McCleland, Mark</au><au>Firestein, Ron</au><au>Corson, Laura</au><au>Vanderbilt, Alex</au><au>Williams, Simon</au><au>Daemen, Anneleen</au><au>Belvin, Marcia</au><au>Eigenbrot, Charles</au><au>Jackson, Peter K</au><au>Malek, Shiva</au><au>Hatzivassiliou, Georgia</au><au>Sampath, Deepak</au><au>Evangelista, Marie</au><au>O'Brien, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>12</volume><issue>10</issue><spage>779</spage><epage>786</epage><pages>779-786</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>The application of a potent lactate dehydrogenase (LDHA) inhibitor GNE-140 on pancreatic cancer cells revealed that resistance to GNE-140 is attributable to an AMPK–mTOR–S6K-mediated switch in utilization from glycolysis to oxidative phosphorylation.
Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth
in vitro
and
in vivo
. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK–mTOR–S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK–S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27479743</pmid><doi>10.1038/nchembio.2143</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2016-10, Vol.12 (10), p.779-786 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_proquest_miscellaneous_1827900985 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature |
subjects | 13/106 13/31 631/67/1059 631/80/86 631/92/1643 631/92/613 82/58 Biochemical Engineering Biochemistry Bioorganic Chemistry Cancer therapies Cell Biology Cell Death - drug effects Cell Line, Tumor Cell Plasticity - drug effects Cell Proliferation - drug effects Chemistry Chemistry/Food Science Dehydrogenase Dose-Response Relationship, Drug Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology Humans Inhibition Inhibitors L-Lactate Dehydrogenase - antagonists & inhibitors L-Lactate Dehydrogenase - metabolism Metabolism Models, Molecular Molecular biology Molecular Structure Pyridones - chemistry Pyridones - pharmacology Signal transduction Structure-Activity Relationship Thiophenes - chemistry Thiophenes - pharmacology Tumors |
title | Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20plasticity%20underpins%20innate%20and%20acquired%20resistance%20to%20LDHA%20inhibition&rft.jtitle=Nature%20chemical%20biology&rft.au=Boudreau,%20Aaron&rft.date=2016-10-01&rft.volume=12&rft.issue=10&rft.spage=779&rft.epage=786&rft.pages=779-786&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.2143&rft_dat=%3Cproquest_cross%3E1827900985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822397781&rft_id=info:pmid/27479743&rfr_iscdi=true |