Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition

The application of a potent lactate dehydrogenase (LDHA) inhibitor GNE-140 on pancreatic cancer cells revealed that resistance to GNE-140 is attributable to an AMPK–mTOR–S6K-mediated switch in utilization from glycolysis to oxidative phosphorylation. Metabolic reprogramming in tumors represents a po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2016-10, Vol.12 (10), p.779-786
Hauptverfasser: Boudreau, Aaron, Purkey, Hans E, Hitz, Anna, Robarge, Kirk, Peterson, David, Labadie, Sharada, Kwong, Mandy, Hong, Rebecca, Gao, Min, Del Nagro, Christopher, Pusapati, Raju, Ma, Shuguang, Salphati, Laurent, Pang, Jodie, Zhou, Aihe, Lai, Tommy, Li, Yingjie, Chen, Zhongguo, Wei, Binqing, Yen, Ivana, Sideris, Steve, McCleland, Mark, Firestein, Ron, Corson, Laura, Vanderbilt, Alex, Williams, Simon, Daemen, Anneleen, Belvin, Marcia, Eigenbrot, Charles, Jackson, Peter K, Malek, Shiva, Hatzivassiliou, Georgia, Sampath, Deepak, Evangelista, Marie, O'Brien, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 786
container_issue 10
container_start_page 779
container_title Nature chemical biology
container_volume 12
creator Boudreau, Aaron
Purkey, Hans E
Hitz, Anna
Robarge, Kirk
Peterson, David
Labadie, Sharada
Kwong, Mandy
Hong, Rebecca
Gao, Min
Del Nagro, Christopher
Pusapati, Raju
Ma, Shuguang
Salphati, Laurent
Pang, Jodie
Zhou, Aihe
Lai, Tommy
Li, Yingjie
Chen, Zhongguo
Wei, Binqing
Yen, Ivana
Sideris, Steve
McCleland, Mark
Firestein, Ron
Corson, Laura
Vanderbilt, Alex
Williams, Simon
Daemen, Anneleen
Belvin, Marcia
Eigenbrot, Charles
Jackson, Peter K
Malek, Shiva
Hatzivassiliou, Georgia
Sampath, Deepak
Evangelista, Marie
O'Brien, Thomas
description The application of a potent lactate dehydrogenase (LDHA) inhibitor GNE-140 on pancreatic cancer cells revealed that resistance to GNE-140 is attributable to an AMPK–mTOR–S6K-mediated switch in utilization from glycolysis to oxidative phosphorylation. Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo . In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK–mTOR–S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK–S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.
doi_str_mv 10.1038/nchembio.2143
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827900985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1827900985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-18b52dba9b757c67121a0d30f134dea5547f703b3791d3d31f54e4193ebcc6383</originalsourceid><addsrcrecordid>eNqN0TtLBDEUBeAgio_V0lYGbGxmzXMyKcU3rGih9ZDHHY3MZtYkU-y_d9ZVEbGwyoV8nMvlIHRI8JRgVp8G-wJz4_spJZxtoF0iBC05r9Tm9yzwDtpL6RVjVlWk3kY7VHKpJGe76OEOsjZ9522x6HTK3vq8LIbgIC58SIUPQWcodHCFtm-Dj-CKCMmnrIOFIvfF7OLmbGQv3vjs-7CPtlrdJTj4fCfo6ery8fymnN1f356fzUrLhcolqY2gzmhlpJC2koQSjR3DLWHcgRaCy1ZiZphUxDHHSCs4cKIYGGsrVrMJOlnnLmL_NkDKzdwnC12nA_RDakhNpcJY1eI_lPJKUMpGevyLvvZDDOMhH4opKWsyqnKtbOxTitA2i-jnOi4bgptVK81XK82qldEffaYOZg7uW3_VMILpGqTxKzxD_LH2z8R3nzuYXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822397781</pqid></control><display><type>article</type><title>Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Boudreau, Aaron ; Purkey, Hans E ; Hitz, Anna ; Robarge, Kirk ; Peterson, David ; Labadie, Sharada ; Kwong, Mandy ; Hong, Rebecca ; Gao, Min ; Del Nagro, Christopher ; Pusapati, Raju ; Ma, Shuguang ; Salphati, Laurent ; Pang, Jodie ; Zhou, Aihe ; Lai, Tommy ; Li, Yingjie ; Chen, Zhongguo ; Wei, Binqing ; Yen, Ivana ; Sideris, Steve ; McCleland, Mark ; Firestein, Ron ; Corson, Laura ; Vanderbilt, Alex ; Williams, Simon ; Daemen, Anneleen ; Belvin, Marcia ; Eigenbrot, Charles ; Jackson, Peter K ; Malek, Shiva ; Hatzivassiliou, Georgia ; Sampath, Deepak ; Evangelista, Marie ; O'Brien, Thomas</creator><creatorcontrib>Boudreau, Aaron ; Purkey, Hans E ; Hitz, Anna ; Robarge, Kirk ; Peterson, David ; Labadie, Sharada ; Kwong, Mandy ; Hong, Rebecca ; Gao, Min ; Del Nagro, Christopher ; Pusapati, Raju ; Ma, Shuguang ; Salphati, Laurent ; Pang, Jodie ; Zhou, Aihe ; Lai, Tommy ; Li, Yingjie ; Chen, Zhongguo ; Wei, Binqing ; Yen, Ivana ; Sideris, Steve ; McCleland, Mark ; Firestein, Ron ; Corson, Laura ; Vanderbilt, Alex ; Williams, Simon ; Daemen, Anneleen ; Belvin, Marcia ; Eigenbrot, Charles ; Jackson, Peter K ; Malek, Shiva ; Hatzivassiliou, Georgia ; Sampath, Deepak ; Evangelista, Marie ; O'Brien, Thomas</creatorcontrib><description>The application of a potent lactate dehydrogenase (LDHA) inhibitor GNE-140 on pancreatic cancer cells revealed that resistance to GNE-140 is attributable to an AMPK–mTOR–S6K-mediated switch in utilization from glycolysis to oxidative phosphorylation. Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo . In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK–mTOR–S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK–S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.2143</identifier><identifier>PMID: 27479743</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/106 ; 13/31 ; 631/67/1059 ; 631/80/86 ; 631/92/1643 ; 631/92/613 ; 82/58 ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cancer therapies ; Cell Biology ; Cell Death - drug effects ; Cell Line, Tumor ; Cell Plasticity - drug effects ; Cell Proliferation - drug effects ; Chemistry ; Chemistry/Food Science ; Dehydrogenase ; Dose-Response Relationship, Drug ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Humans ; Inhibition ; Inhibitors ; L-Lactate Dehydrogenase - antagonists &amp; inhibitors ; L-Lactate Dehydrogenase - metabolism ; Metabolism ; Models, Molecular ; Molecular biology ; Molecular Structure ; Pyridones - chemistry ; Pyridones - pharmacology ; Signal transduction ; Structure-Activity Relationship ; Thiophenes - chemistry ; Thiophenes - pharmacology ; Tumors</subject><ispartof>Nature chemical biology, 2016-10, Vol.12 (10), p.779-786</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>Copyright Nature Publishing Group Oct 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-18b52dba9b757c67121a0d30f134dea5547f703b3791d3d31f54e4193ebcc6383</citedby><cites>FETCH-LOGICAL-c459t-18b52dba9b757c67121a0d30f134dea5547f703b3791d3d31f54e4193ebcc6383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.2143$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.2143$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27479743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boudreau, Aaron</creatorcontrib><creatorcontrib>Purkey, Hans E</creatorcontrib><creatorcontrib>Hitz, Anna</creatorcontrib><creatorcontrib>Robarge, Kirk</creatorcontrib><creatorcontrib>Peterson, David</creatorcontrib><creatorcontrib>Labadie, Sharada</creatorcontrib><creatorcontrib>Kwong, Mandy</creatorcontrib><creatorcontrib>Hong, Rebecca</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Del Nagro, Christopher</creatorcontrib><creatorcontrib>Pusapati, Raju</creatorcontrib><creatorcontrib>Ma, Shuguang</creatorcontrib><creatorcontrib>Salphati, Laurent</creatorcontrib><creatorcontrib>Pang, Jodie</creatorcontrib><creatorcontrib>Zhou, Aihe</creatorcontrib><creatorcontrib>Lai, Tommy</creatorcontrib><creatorcontrib>Li, Yingjie</creatorcontrib><creatorcontrib>Chen, Zhongguo</creatorcontrib><creatorcontrib>Wei, Binqing</creatorcontrib><creatorcontrib>Yen, Ivana</creatorcontrib><creatorcontrib>Sideris, Steve</creatorcontrib><creatorcontrib>McCleland, Mark</creatorcontrib><creatorcontrib>Firestein, Ron</creatorcontrib><creatorcontrib>Corson, Laura</creatorcontrib><creatorcontrib>Vanderbilt, Alex</creatorcontrib><creatorcontrib>Williams, Simon</creatorcontrib><creatorcontrib>Daemen, Anneleen</creatorcontrib><creatorcontrib>Belvin, Marcia</creatorcontrib><creatorcontrib>Eigenbrot, Charles</creatorcontrib><creatorcontrib>Jackson, Peter K</creatorcontrib><creatorcontrib>Malek, Shiva</creatorcontrib><creatorcontrib>Hatzivassiliou, Georgia</creatorcontrib><creatorcontrib>Sampath, Deepak</creatorcontrib><creatorcontrib>Evangelista, Marie</creatorcontrib><creatorcontrib>O'Brien, Thomas</creatorcontrib><title>Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>The application of a potent lactate dehydrogenase (LDHA) inhibitor GNE-140 on pancreatic cancer cells revealed that resistance to GNE-140 is attributable to an AMPK–mTOR–S6K-mediated switch in utilization from glycolysis to oxidative phosphorylation. Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo . In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK–mTOR–S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK–S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.</description><subject>13/106</subject><subject>13/31</subject><subject>631/67/1059</subject><subject>631/80/86</subject><subject>631/92/1643</subject><subject>631/92/613</subject><subject>82/58</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cancer therapies</subject><subject>Cell Biology</subject><subject>Cell Death - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Plasticity - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Dehydrogenase</subject><subject>Dose-Response Relationship, Drug</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Inhibitors</subject><subject>L-Lactate Dehydrogenase - antagonists &amp; inhibitors</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>Metabolism</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Structure</subject><subject>Pyridones - chemistry</subject><subject>Pyridones - pharmacology</subject><subject>Signal transduction</subject><subject>Structure-Activity Relationship</subject><subject>Thiophenes - chemistry</subject><subject>Thiophenes - pharmacology</subject><subject>Tumors</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0TtLBDEUBeAgio_V0lYGbGxmzXMyKcU3rGih9ZDHHY3MZtYkU-y_d9ZVEbGwyoV8nMvlIHRI8JRgVp8G-wJz4_spJZxtoF0iBC05r9Tm9yzwDtpL6RVjVlWk3kY7VHKpJGe76OEOsjZ9522x6HTK3vq8LIbgIC58SIUPQWcodHCFtm-Dj-CKCMmnrIOFIvfF7OLmbGQv3vjs-7CPtlrdJTj4fCfo6ery8fymnN1f356fzUrLhcolqY2gzmhlpJC2koQSjR3DLWHcgRaCy1ZiZphUxDHHSCs4cKIYGGsrVrMJOlnnLmL_NkDKzdwnC12nA_RDakhNpcJY1eI_lPJKUMpGevyLvvZDDOMhH4opKWsyqnKtbOxTitA2i-jnOi4bgptVK81XK82qldEffaYOZg7uW3_VMILpGqTxKzxD_LH2z8R3nzuYXQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Boudreau, Aaron</creator><creator>Purkey, Hans E</creator><creator>Hitz, Anna</creator><creator>Robarge, Kirk</creator><creator>Peterson, David</creator><creator>Labadie, Sharada</creator><creator>Kwong, Mandy</creator><creator>Hong, Rebecca</creator><creator>Gao, Min</creator><creator>Del Nagro, Christopher</creator><creator>Pusapati, Raju</creator><creator>Ma, Shuguang</creator><creator>Salphati, Laurent</creator><creator>Pang, Jodie</creator><creator>Zhou, Aihe</creator><creator>Lai, Tommy</creator><creator>Li, Yingjie</creator><creator>Chen, Zhongguo</creator><creator>Wei, Binqing</creator><creator>Yen, Ivana</creator><creator>Sideris, Steve</creator><creator>McCleland, Mark</creator><creator>Firestein, Ron</creator><creator>Corson, Laura</creator><creator>Vanderbilt, Alex</creator><creator>Williams, Simon</creator><creator>Daemen, Anneleen</creator><creator>Belvin, Marcia</creator><creator>Eigenbrot, Charles</creator><creator>Jackson, Peter K</creator><creator>Malek, Shiva</creator><creator>Hatzivassiliou, Georgia</creator><creator>Sampath, Deepak</creator><creator>Evangelista, Marie</creator><creator>O'Brien, Thomas</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20161001</creationdate><title>Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition</title><author>Boudreau, Aaron ; Purkey, Hans E ; Hitz, Anna ; Robarge, Kirk ; Peterson, David ; Labadie, Sharada ; Kwong, Mandy ; Hong, Rebecca ; Gao, Min ; Del Nagro, Christopher ; Pusapati, Raju ; Ma, Shuguang ; Salphati, Laurent ; Pang, Jodie ; Zhou, Aihe ; Lai, Tommy ; Li, Yingjie ; Chen, Zhongguo ; Wei, Binqing ; Yen, Ivana ; Sideris, Steve ; McCleland, Mark ; Firestein, Ron ; Corson, Laura ; Vanderbilt, Alex ; Williams, Simon ; Daemen, Anneleen ; Belvin, Marcia ; Eigenbrot, Charles ; Jackson, Peter K ; Malek, Shiva ; Hatzivassiliou, Georgia ; Sampath, Deepak ; Evangelista, Marie ; O'Brien, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-18b52dba9b757c67121a0d30f134dea5547f703b3791d3d31f54e4193ebcc6383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/106</topic><topic>13/31</topic><topic>631/67/1059</topic><topic>631/80/86</topic><topic>631/92/1643</topic><topic>631/92/613</topic><topic>82/58</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cancer therapies</topic><topic>Cell Biology</topic><topic>Cell Death - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Plasticity - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Dehydrogenase</topic><topic>Dose-Response Relationship, Drug</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Inhibitors</topic><topic>L-Lactate Dehydrogenase - antagonists &amp; inhibitors</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>Metabolism</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Structure</topic><topic>Pyridones - chemistry</topic><topic>Pyridones - pharmacology</topic><topic>Signal transduction</topic><topic>Structure-Activity Relationship</topic><topic>Thiophenes - chemistry</topic><topic>Thiophenes - pharmacology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boudreau, Aaron</creatorcontrib><creatorcontrib>Purkey, Hans E</creatorcontrib><creatorcontrib>Hitz, Anna</creatorcontrib><creatorcontrib>Robarge, Kirk</creatorcontrib><creatorcontrib>Peterson, David</creatorcontrib><creatorcontrib>Labadie, Sharada</creatorcontrib><creatorcontrib>Kwong, Mandy</creatorcontrib><creatorcontrib>Hong, Rebecca</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Del Nagro, Christopher</creatorcontrib><creatorcontrib>Pusapati, Raju</creatorcontrib><creatorcontrib>Ma, Shuguang</creatorcontrib><creatorcontrib>Salphati, Laurent</creatorcontrib><creatorcontrib>Pang, Jodie</creatorcontrib><creatorcontrib>Zhou, Aihe</creatorcontrib><creatorcontrib>Lai, Tommy</creatorcontrib><creatorcontrib>Li, Yingjie</creatorcontrib><creatorcontrib>Chen, Zhongguo</creatorcontrib><creatorcontrib>Wei, Binqing</creatorcontrib><creatorcontrib>Yen, Ivana</creatorcontrib><creatorcontrib>Sideris, Steve</creatorcontrib><creatorcontrib>McCleland, Mark</creatorcontrib><creatorcontrib>Firestein, Ron</creatorcontrib><creatorcontrib>Corson, Laura</creatorcontrib><creatorcontrib>Vanderbilt, Alex</creatorcontrib><creatorcontrib>Williams, Simon</creatorcontrib><creatorcontrib>Daemen, Anneleen</creatorcontrib><creatorcontrib>Belvin, Marcia</creatorcontrib><creatorcontrib>Eigenbrot, Charles</creatorcontrib><creatorcontrib>Jackson, Peter K</creatorcontrib><creatorcontrib>Malek, Shiva</creatorcontrib><creatorcontrib>Hatzivassiliou, Georgia</creatorcontrib><creatorcontrib>Sampath, Deepak</creatorcontrib><creatorcontrib>Evangelista, Marie</creatorcontrib><creatorcontrib>O'Brien, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boudreau, Aaron</au><au>Purkey, Hans E</au><au>Hitz, Anna</au><au>Robarge, Kirk</au><au>Peterson, David</au><au>Labadie, Sharada</au><au>Kwong, Mandy</au><au>Hong, Rebecca</au><au>Gao, Min</au><au>Del Nagro, Christopher</au><au>Pusapati, Raju</au><au>Ma, Shuguang</au><au>Salphati, Laurent</au><au>Pang, Jodie</au><au>Zhou, Aihe</au><au>Lai, Tommy</au><au>Li, Yingjie</au><au>Chen, Zhongguo</au><au>Wei, Binqing</au><au>Yen, Ivana</au><au>Sideris, Steve</au><au>McCleland, Mark</au><au>Firestein, Ron</au><au>Corson, Laura</au><au>Vanderbilt, Alex</au><au>Williams, Simon</au><au>Daemen, Anneleen</au><au>Belvin, Marcia</au><au>Eigenbrot, Charles</au><au>Jackson, Peter K</au><au>Malek, Shiva</au><au>Hatzivassiliou, Georgia</au><au>Sampath, Deepak</au><au>Evangelista, Marie</au><au>O'Brien, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>12</volume><issue>10</issue><spage>779</spage><epage>786</epage><pages>779-786</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>The application of a potent lactate dehydrogenase (LDHA) inhibitor GNE-140 on pancreatic cancer cells revealed that resistance to GNE-140 is attributable to an AMPK–mTOR–S6K-mediated switch in utilization from glycolysis to oxidative phosphorylation. Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo . In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK–mTOR–S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK–S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27479743</pmid><doi>10.1038/nchembio.2143</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2016-10, Vol.12 (10), p.779-786
issn 1552-4450
1552-4469
language eng
recordid cdi_proquest_miscellaneous_1827900985
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 13/106
13/31
631/67/1059
631/80/86
631/92/1643
631/92/613
82/58
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cancer therapies
Cell Biology
Cell Death - drug effects
Cell Line, Tumor
Cell Plasticity - drug effects
Cell Proliferation - drug effects
Chemistry
Chemistry/Food Science
Dehydrogenase
Dose-Response Relationship, Drug
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
Humans
Inhibition
Inhibitors
L-Lactate Dehydrogenase - antagonists & inhibitors
L-Lactate Dehydrogenase - metabolism
Metabolism
Models, Molecular
Molecular biology
Molecular Structure
Pyridones - chemistry
Pyridones - pharmacology
Signal transduction
Structure-Activity Relationship
Thiophenes - chemistry
Thiophenes - pharmacology
Tumors
title Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20plasticity%20underpins%20innate%20and%20acquired%20resistance%20to%20LDHA%20inhibition&rft.jtitle=Nature%20chemical%20biology&rft.au=Boudreau,%20Aaron&rft.date=2016-10-01&rft.volume=12&rft.issue=10&rft.spage=779&rft.epage=786&rft.pages=779-786&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.2143&rft_dat=%3Cproquest_cross%3E1827900985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822397781&rft_id=info:pmid/27479743&rfr_iscdi=true