Multiscale temporal neural dynamics predict performance in a complex sensorimotor task

Ongoing neuronal oscillations are pivotal in brain functioning and are known to influence subjects' performance. This modulation is usually studied on short time scales whilst multiple time scales are rarely considered. In our study we show that Long-Range Temporal Correlations (LRTCs) estimate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2016-11, Vol.141, p.291-303
Hauptverfasser: Samek, Wojciech, Blythe, Duncan A.J., Curio, Gabriel, Müller, Klaus-Robert, Blankertz, Benjamin, Nikulin, Vadim V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue
container_start_page 291
container_title NeuroImage (Orlando, Fla.)
container_volume 141
creator Samek, Wojciech
Blythe, Duncan A.J.
Curio, Gabriel
Müller, Klaus-Robert
Blankertz, Benjamin
Nikulin, Vadim V.
description Ongoing neuronal oscillations are pivotal in brain functioning and are known to influence subjects' performance. This modulation is usually studied on short time scales whilst multiple time scales are rarely considered. In our study we show that Long-Range Temporal Correlations (LRTCs) estimated from the amplitude of EEG oscillations over a range of time-scales predict performance in a complex sensorimotor task, based on Brain-Computer Interfacing (BCI). Our paradigm involved eighty subjects generating covert motor responses to dynamically changing visual cues and thus controlling a computer program through the modulation of neuronal oscillations. The neuronal dynamics were estimated with multichannel EEG. Our results show that: (a) BCI task accuracy may be predicted on the basis of LRTCs measured during the preceding training session, and (b) this result was not due to signal-to-noise ratio of the ongoing neuronal oscillations. Our results provide direct empirical evidence in addition to previous theoretical work suggesting that scale-free neuronal dynamics are important for optimal brain functioning. •Functional relevance of Long-Range Temporal Correlations (LRTCs) was investigated.•LRTCs were measured with EEG during complex sensorimotor task.•Alpha-band LRTCs predicted task performance.•Power-law neuronal dynamics are likely to be beneficial for brain functioning.
doi_str_mv 10.1016/j.neuroimage.2016.06.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827899296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381191630307X</els_id><sourcerecordid>1821098557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-52e108bbb97be6831f318dee448068b0f6fdae9347d4ec631fa687861a62f0113</originalsourceid><addsrcrecordid>eNqNkctKxTAQhoMo3l9BAm7ctCZtkyZLFW-guFG3IU2nkmPb1KQVz9ubco4KbhQGJky-zGT-HyFMSUoJ5aeLtIfJO9vpF0izWElJDMY30C4lkiWSldnmfGZ5IiiVO2gvhAUhRNJCbKOdrCxIxqTYRc_3UzvaYHQLeIRucF63eG4eU73sdWdNwIOH2poRD-Ab5zvdG8C2xxob1w0tfOAAfXDedm50Ho86vB6grUa3AQ7XeR89XV0-Xtwkdw_Xtxdnd4lhhI0Jy4ASUVWVLCvgIqdNTkUNUBSCcFGRhje1BpkXZV2A4fFec1EKTjXPGkJpvo9OVn0H794mCKPq4jLQtroHNwVFRVYKKTPJ_4NG7QRjZUSPf6ELN_k-LjJTUcQ8QpESK8p4F4KHRg1RAu2XihI126QW6scmNdukSAw2_-VoPWCqOqi_H375EoHzFQBRvHcLXgVjIepeWw9mVLWzf0_5BDvwqPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820913573</pqid></control><display><type>article</type><title>Multiscale temporal neural dynamics predict performance in a complex sensorimotor task</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Samek, Wojciech ; Blythe, Duncan A.J. ; Curio, Gabriel ; Müller, Klaus-Robert ; Blankertz, Benjamin ; Nikulin, Vadim V.</creator><creatorcontrib>Samek, Wojciech ; Blythe, Duncan A.J. ; Curio, Gabriel ; Müller, Klaus-Robert ; Blankertz, Benjamin ; Nikulin, Vadim V.</creatorcontrib><description>Ongoing neuronal oscillations are pivotal in brain functioning and are known to influence subjects' performance. This modulation is usually studied on short time scales whilst multiple time scales are rarely considered. In our study we show that Long-Range Temporal Correlations (LRTCs) estimated from the amplitude of EEG oscillations over a range of time-scales predict performance in a complex sensorimotor task, based on Brain-Computer Interfacing (BCI). Our paradigm involved eighty subjects generating covert motor responses to dynamically changing visual cues and thus controlling a computer program through the modulation of neuronal oscillations. The neuronal dynamics were estimated with multichannel EEG. Our results show that: (a) BCI task accuracy may be predicted on the basis of LRTCs measured during the preceding training session, and (b) this result was not due to signal-to-noise ratio of the ongoing neuronal oscillations. Our results provide direct empirical evidence in addition to previous theoretical work suggesting that scale-free neuronal dynamics are important for optimal brain functioning. •Functional relevance of Long-Range Temporal Correlations (LRTCs) was investigated.•LRTCs were measured with EEG during complex sensorimotor task.•Alpha-band LRTCs predicted task performance.•Power-law neuronal dynamics are likely to be beneficial for brain functioning.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2016.06.056</identifier><identifier>PMID: 27402598</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Alpha Rhythm - physiology ; Avalanches ; Brain ; Brain Mapping - methods ; Brain-Computer Interfaces ; Cerebral Cortex - physiology ; Computer applications ; Data analysis ; EEG ; Electroencephalography ; Electroencephalography - methods ; Estimates ; Experiments ; Female ; Humans ; Imagination - physiology ; Implants ; Male ; Movement - physiology ; Neuromodulation ; Oscillations ; Phase transitions ; Prognosis ; Psychomotor Performance - physiology ; Reproducibility of Results ; Sensitivity and Specificity ; Sensorimotor system ; Standard deviation ; Studies ; Time Factors ; Visual Perception - physiology ; Visual stimuli</subject><ispartof>NeuroImage (Orlando, Fla.), 2016-11, Vol.141, p.291-303</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 1, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-52e108bbb97be6831f318dee448068b0f6fdae9347d4ec631fa687861a62f0113</citedby><cites>FETCH-LOGICAL-c505t-52e108bbb97be6831f318dee448068b0f6fdae9347d4ec631fa687861a62f0113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S105381191630307X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27402598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samek, Wojciech</creatorcontrib><creatorcontrib>Blythe, Duncan A.J.</creatorcontrib><creatorcontrib>Curio, Gabriel</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><creatorcontrib>Blankertz, Benjamin</creatorcontrib><creatorcontrib>Nikulin, Vadim V.</creatorcontrib><title>Multiscale temporal neural dynamics predict performance in a complex sensorimotor task</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Ongoing neuronal oscillations are pivotal in brain functioning and are known to influence subjects' performance. This modulation is usually studied on short time scales whilst multiple time scales are rarely considered. In our study we show that Long-Range Temporal Correlations (LRTCs) estimated from the amplitude of EEG oscillations over a range of time-scales predict performance in a complex sensorimotor task, based on Brain-Computer Interfacing (BCI). Our paradigm involved eighty subjects generating covert motor responses to dynamically changing visual cues and thus controlling a computer program through the modulation of neuronal oscillations. The neuronal dynamics were estimated with multichannel EEG. Our results show that: (a) BCI task accuracy may be predicted on the basis of LRTCs measured during the preceding training session, and (b) this result was not due to signal-to-noise ratio of the ongoing neuronal oscillations. Our results provide direct empirical evidence in addition to previous theoretical work suggesting that scale-free neuronal dynamics are important for optimal brain functioning. •Functional relevance of Long-Range Temporal Correlations (LRTCs) was investigated.•LRTCs were measured with EEG during complex sensorimotor task.•Alpha-band LRTCs predicted task performance.•Power-law neuronal dynamics are likely to be beneficial for brain functioning.</description><subject>Adult</subject><subject>Alpha Rhythm - physiology</subject><subject>Avalanches</subject><subject>Brain</subject><subject>Brain Mapping - methods</subject><subject>Brain-Computer Interfaces</subject><subject>Cerebral Cortex - physiology</subject><subject>Computer applications</subject><subject>Data analysis</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Estimates</subject><subject>Experiments</subject><subject>Female</subject><subject>Humans</subject><subject>Imagination - physiology</subject><subject>Implants</subject><subject>Male</subject><subject>Movement - physiology</subject><subject>Neuromodulation</subject><subject>Oscillations</subject><subject>Phase transitions</subject><subject>Prognosis</subject><subject>Psychomotor Performance - physiology</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sensorimotor system</subject><subject>Standard deviation</subject><subject>Studies</subject><subject>Time Factors</subject><subject>Visual Perception - physiology</subject><subject>Visual stimuli</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkctKxTAQhoMo3l9BAm7ctCZtkyZLFW-guFG3IU2nkmPb1KQVz9ubco4KbhQGJky-zGT-HyFMSUoJ5aeLtIfJO9vpF0izWElJDMY30C4lkiWSldnmfGZ5IiiVO2gvhAUhRNJCbKOdrCxIxqTYRc_3UzvaYHQLeIRucF63eG4eU73sdWdNwIOH2poRD-Ab5zvdG8C2xxob1w0tfOAAfXDedm50Ho86vB6grUa3AQ7XeR89XV0-Xtwkdw_Xtxdnd4lhhI0Jy4ASUVWVLCvgIqdNTkUNUBSCcFGRhje1BpkXZV2A4fFec1EKTjXPGkJpvo9OVn0H794mCKPq4jLQtroHNwVFRVYKKTPJ_4NG7QRjZUSPf6ELN_k-LjJTUcQ8QpESK8p4F4KHRg1RAu2XihI126QW6scmNdukSAw2_-VoPWCqOqi_H375EoHzFQBRvHcLXgVjIepeWw9mVLWzf0_5BDvwqPI</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Samek, Wojciech</creator><creator>Blythe, Duncan A.J.</creator><creator>Curio, Gabriel</creator><creator>Müller, Klaus-Robert</creator><creator>Blankertz, Benjamin</creator><creator>Nikulin, Vadim V.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20161101</creationdate><title>Multiscale temporal neural dynamics predict performance in a complex sensorimotor task</title><author>Samek, Wojciech ; Blythe, Duncan A.J. ; Curio, Gabriel ; Müller, Klaus-Robert ; Blankertz, Benjamin ; Nikulin, Vadim V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-52e108bbb97be6831f318dee448068b0f6fdae9347d4ec631fa687861a62f0113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Alpha Rhythm - physiology</topic><topic>Avalanches</topic><topic>Brain</topic><topic>Brain Mapping - methods</topic><topic>Brain-Computer Interfaces</topic><topic>Cerebral Cortex - physiology</topic><topic>Computer applications</topic><topic>Data analysis</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Estimates</topic><topic>Experiments</topic><topic>Female</topic><topic>Humans</topic><topic>Imagination - physiology</topic><topic>Implants</topic><topic>Male</topic><topic>Movement - physiology</topic><topic>Neuromodulation</topic><topic>Oscillations</topic><topic>Phase transitions</topic><topic>Prognosis</topic><topic>Psychomotor Performance - physiology</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sensorimotor system</topic><topic>Standard deviation</topic><topic>Studies</topic><topic>Time Factors</topic><topic>Visual Perception - physiology</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samek, Wojciech</creatorcontrib><creatorcontrib>Blythe, Duncan A.J.</creatorcontrib><creatorcontrib>Curio, Gabriel</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><creatorcontrib>Blankertz, Benjamin</creatorcontrib><creatorcontrib>Nikulin, Vadim V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samek, Wojciech</au><au>Blythe, Duncan A.J.</au><au>Curio, Gabriel</au><au>Müller, Klaus-Robert</au><au>Blankertz, Benjamin</au><au>Nikulin, Vadim V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale temporal neural dynamics predict performance in a complex sensorimotor task</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>141</volume><spage>291</spage><epage>303</epage><pages>291-303</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Ongoing neuronal oscillations are pivotal in brain functioning and are known to influence subjects' performance. This modulation is usually studied on short time scales whilst multiple time scales are rarely considered. In our study we show that Long-Range Temporal Correlations (LRTCs) estimated from the amplitude of EEG oscillations over a range of time-scales predict performance in a complex sensorimotor task, based on Brain-Computer Interfacing (BCI). Our paradigm involved eighty subjects generating covert motor responses to dynamically changing visual cues and thus controlling a computer program through the modulation of neuronal oscillations. The neuronal dynamics were estimated with multichannel EEG. Our results show that: (a) BCI task accuracy may be predicted on the basis of LRTCs measured during the preceding training session, and (b) this result was not due to signal-to-noise ratio of the ongoing neuronal oscillations. Our results provide direct empirical evidence in addition to previous theoretical work suggesting that scale-free neuronal dynamics are important for optimal brain functioning. •Functional relevance of Long-Range Temporal Correlations (LRTCs) was investigated.•LRTCs were measured with EEG during complex sensorimotor task.•Alpha-band LRTCs predicted task performance.•Power-law neuronal dynamics are likely to be beneficial for brain functioning.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27402598</pmid><doi>10.1016/j.neuroimage.2016.06.056</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2016-11, Vol.141, p.291-303
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1827899296
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Alpha Rhythm - physiology
Avalanches
Brain
Brain Mapping - methods
Brain-Computer Interfaces
Cerebral Cortex - physiology
Computer applications
Data analysis
EEG
Electroencephalography
Electroencephalography - methods
Estimates
Experiments
Female
Humans
Imagination - physiology
Implants
Male
Movement - physiology
Neuromodulation
Oscillations
Phase transitions
Prognosis
Psychomotor Performance - physiology
Reproducibility of Results
Sensitivity and Specificity
Sensorimotor system
Standard deviation
Studies
Time Factors
Visual Perception - physiology
Visual stimuli
title Multiscale temporal neural dynamics predict performance in a complex sensorimotor task
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20temporal%20neural%20dynamics%20predict%20performance%20in%20a%20complex%20sensorimotor%20task&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Samek,%20Wojciech&rft.date=2016-11-01&rft.volume=141&rft.spage=291&rft.epage=303&rft.pages=291-303&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2016.06.056&rft_dat=%3Cproquest_cross%3E1821098557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820913573&rft_id=info:pmid/27402598&rft_els_id=S105381191630307X&rfr_iscdi=true