Galectin-3 Phosphorylation Is Required for Its Anti-apoptotic Function and Cell Cycle Arrest

Galectin-3, a β-galactoside-binding protein, is implicated in cell growth, adhesion, differentiation, and tumor progression by interactions with its ligands. Recent studies have revealed that galectin-3 suppresses apoptosis and anoikis that contribute to cell survival during metastatic cascades. Pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-03, Vol.277 (9), p.6852-6857
Hauptverfasser: Yoshii, Tadashi, Fukumori, Tomoharu, Honjo, Yuichiro, Inohara, Hidenori, Kim, Hyeong-Reh Choi, Raz, Avraham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6857
container_issue 9
container_start_page 6852
container_title The Journal of biological chemistry
container_volume 277
creator Yoshii, Tadashi
Fukumori, Tomoharu
Honjo, Yuichiro
Inohara, Hidenori
Kim, Hyeong-Reh Choi
Raz, Avraham
description Galectin-3, a β-galactoside-binding protein, is implicated in cell growth, adhesion, differentiation, and tumor progression by interactions with its ligands. Recent studies have revealed that galectin-3 suppresses apoptosis and anoikis that contribute to cell survival during metastatic cascades. Previously, it has been shown that human galectin-3 undergoes post-translational signaling modification of Ser6 phosphorylation that acts as an “on/off” switch for its sugar-binding capability. We questioned whether galectin-3 phosphorylation is required for its anti-apoptotic function. Serine to alanine (S6A) and serine to glutamic acid (S6E) mutations were produced at the casein kinase I phosphorylation site in galectin-3. The cDNAs were transfected into a breast carcinoma cell line BT-549 that innately expresses no galectin-3. Metabolic labeling revealed that only wild type galectin-3 undergoes phosphorylation in vivo. Expression of Ser6 mutants of galectin-3 failed to protect cells from cisplatin-induced cell death and poly(ADP-ribose) polymerase from degradation when compared with wild type galectin-3. The non-phosphorylated galectin-3 mutants failed to protect cells from anoikis with G1 arrest when cells were cultured in suspension. In response to a loss of cell-substrate interactions, only cells expressing wild type galectin-3 down-regulated cyclin A expression and up-regulated cyclin D1 and cyclin-dependent kinase inhibitors, i.e.p21WAF1/CIP1 and p27KIP1 expression levels. These results demonstrate that galectin-3 phosphorylation regulates its anti-apoptotic signaling activity.
doi_str_mv 10.1074/jbc.M107668200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18274432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819822305</els_id><sourcerecordid>18274432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-be7f752eb1b0c0b03b91df353688c1620e60cbaf735e675ce1b54376f8c43b813</originalsourceid><addsrcrecordid>eNp1kE1v1DAQhi0EotvClSOyOHDL4o849h5XK1pWKgIhkDggWfFkQlxl49R2QPvvcbsr9cRcZg7PzLx6CHnD2ZozXX-4c7D-XKamMYKxZ2TFmZGVVPznc7JiTPBqI5S5IJcp3bFS9Ya_JBeca1FrrVfk1007ImQ_VZJ-HUKahxCPY5t9mOg-0W94v_iIHe1DpPuc6HbKvmrnMOeQPdDrZYJHtp06usNxpLsjjEi3MWLKr8iLvh0Tvj73K_Lj-uP33afq9svNfre9rUCxOlcOda-VQMcdA-aYdBve9VLJxhjgjWDYMHBtr6XCRitA7lQtddMbqKUzXF6R96e7cwz3S3lsDz5BSdNOGJZkuRG6rqUo4PoEQgwpReztHP2hjUfLmX3waYtP--SzLLw9X17cAbsn_CywAO9OwOB_D3-LKut8gAEPVmhtN7Yx6uGtOUFYJPzxGG0CjxNgVxYg2y74_wX4B2uAjtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18274432</pqid></control><display><type>article</type><title>Galectin-3 Phosphorylation Is Required for Its Anti-apoptotic Function and Cell Cycle Arrest</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Yoshii, Tadashi ; Fukumori, Tomoharu ; Honjo, Yuichiro ; Inohara, Hidenori ; Kim, Hyeong-Reh Choi ; Raz, Avraham</creator><creatorcontrib>Yoshii, Tadashi ; Fukumori, Tomoharu ; Honjo, Yuichiro ; Inohara, Hidenori ; Kim, Hyeong-Reh Choi ; Raz, Avraham</creatorcontrib><description>Galectin-3, a β-galactoside-binding protein, is implicated in cell growth, adhesion, differentiation, and tumor progression by interactions with its ligands. Recent studies have revealed that galectin-3 suppresses apoptosis and anoikis that contribute to cell survival during metastatic cascades. Previously, it has been shown that human galectin-3 undergoes post-translational signaling modification of Ser6 phosphorylation that acts as an “on/off” switch for its sugar-binding capability. We questioned whether galectin-3 phosphorylation is required for its anti-apoptotic function. Serine to alanine (S6A) and serine to glutamic acid (S6E) mutations were produced at the casein kinase I phosphorylation site in galectin-3. The cDNAs were transfected into a breast carcinoma cell line BT-549 that innately expresses no galectin-3. Metabolic labeling revealed that only wild type galectin-3 undergoes phosphorylation in vivo. Expression of Ser6 mutants of galectin-3 failed to protect cells from cisplatin-induced cell death and poly(ADP-ribose) polymerase from degradation when compared with wild type galectin-3. The non-phosphorylated galectin-3 mutants failed to protect cells from anoikis with G1 arrest when cells were cultured in suspension. In response to a loss of cell-substrate interactions, only cells expressing wild type galectin-3 down-regulated cyclin A expression and up-regulated cyclin D1 and cyclin-dependent kinase inhibitors, i.e.p21WAF1/CIP1 and p27KIP1 expression levels. These results demonstrate that galectin-3 phosphorylation regulates its anti-apoptotic signaling activity.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M107668200</identifier><identifier>PMID: 11724777</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anoikis ; Antigens, Differentiation - metabolism ; Apoptosis ; b-galactoside-binding protein ; Binding Sites ; Blotting, Western ; Casein Kinases ; Cell Cycle ; Cell Line ; Cell Survival ; Cisplatin - pharmacology ; Cyclin A - metabolism ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins - metabolism ; DNA - metabolism ; DNA, Complementary - metabolism ; Down-Regulation ; Galectin 3 ; Humans ; KIP1 gene ; Ligands ; Mutagenesis, Site-Directed ; Mutation ; Phosphorylation ; Precipitin Tests ; Protein Binding ; Protein Kinases - metabolism ; Protein Processing, Post-Translational ; Protein Structure, Tertiary ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Serine - chemistry ; Signal Transduction ; Time Factors ; Transfection ; Tumor Cells, Cultured ; Up-Regulation ; WAF1/CIP1 gene</subject><ispartof>The Journal of biological chemistry, 2002-03, Vol.277 (9), p.6852-6857</ispartof><rights>2002 © 2002 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-be7f752eb1b0c0b03b91df353688c1620e60cbaf735e675ce1b54376f8c43b813</citedby><cites>FETCH-LOGICAL-c504t-be7f752eb1b0c0b03b91df353688c1620e60cbaf735e675ce1b54376f8c43b813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11724777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshii, Tadashi</creatorcontrib><creatorcontrib>Fukumori, Tomoharu</creatorcontrib><creatorcontrib>Honjo, Yuichiro</creatorcontrib><creatorcontrib>Inohara, Hidenori</creatorcontrib><creatorcontrib>Kim, Hyeong-Reh Choi</creatorcontrib><creatorcontrib>Raz, Avraham</creatorcontrib><title>Galectin-3 Phosphorylation Is Required for Its Anti-apoptotic Function and Cell Cycle Arrest</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Galectin-3, a β-galactoside-binding protein, is implicated in cell growth, adhesion, differentiation, and tumor progression by interactions with its ligands. Recent studies have revealed that galectin-3 suppresses apoptosis and anoikis that contribute to cell survival during metastatic cascades. Previously, it has been shown that human galectin-3 undergoes post-translational signaling modification of Ser6 phosphorylation that acts as an “on/off” switch for its sugar-binding capability. We questioned whether galectin-3 phosphorylation is required for its anti-apoptotic function. Serine to alanine (S6A) and serine to glutamic acid (S6E) mutations were produced at the casein kinase I phosphorylation site in galectin-3. The cDNAs were transfected into a breast carcinoma cell line BT-549 that innately expresses no galectin-3. Metabolic labeling revealed that only wild type galectin-3 undergoes phosphorylation in vivo. Expression of Ser6 mutants of galectin-3 failed to protect cells from cisplatin-induced cell death and poly(ADP-ribose) polymerase from degradation when compared with wild type galectin-3. The non-phosphorylated galectin-3 mutants failed to protect cells from anoikis with G1 arrest when cells were cultured in suspension. In response to a loss of cell-substrate interactions, only cells expressing wild type galectin-3 down-regulated cyclin A expression and up-regulated cyclin D1 and cyclin-dependent kinase inhibitors, i.e.p21WAF1/CIP1 and p27KIP1 expression levels. These results demonstrate that galectin-3 phosphorylation regulates its anti-apoptotic signaling activity.</description><subject>Anoikis</subject><subject>Antigens, Differentiation - metabolism</subject><subject>Apoptosis</subject><subject>b-galactoside-binding protein</subject><subject>Binding Sites</subject><subject>Blotting, Western</subject><subject>Casein Kinases</subject><subject>Cell Cycle</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Cisplatin - pharmacology</subject><subject>Cyclin A - metabolism</subject><subject>Cyclin-Dependent Kinase Inhibitor p21</subject><subject>Cyclins - metabolism</subject><subject>DNA - metabolism</subject><subject>DNA, Complementary - metabolism</subject><subject>Down-Regulation</subject><subject>Galectin 3</subject><subject>Humans</subject><subject>KIP1 gene</subject><subject>Ligands</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Precipitin Tests</subject><subject>Protein Binding</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Structure, Tertiary</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Serine - chemistry</subject><subject>Signal Transduction</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Tumor Cells, Cultured</subject><subject>Up-Regulation</subject><subject>WAF1/CIP1 gene</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1v1DAQhi0EotvClSOyOHDL4o849h5XK1pWKgIhkDggWfFkQlxl49R2QPvvcbsr9cRcZg7PzLx6CHnD2ZozXX-4c7D-XKamMYKxZ2TFmZGVVPznc7JiTPBqI5S5IJcp3bFS9Ya_JBeca1FrrVfk1007ImQ_VZJ-HUKahxCPY5t9mOg-0W94v_iIHe1DpPuc6HbKvmrnMOeQPdDrZYJHtp06usNxpLsjjEi3MWLKr8iLvh0Tvj73K_Lj-uP33afq9svNfre9rUCxOlcOda-VQMcdA-aYdBve9VLJxhjgjWDYMHBtr6XCRitA7lQtddMbqKUzXF6R96e7cwz3S3lsDz5BSdNOGJZkuRG6rqUo4PoEQgwpReztHP2hjUfLmX3waYtP--SzLLw9X17cAbsn_CywAO9OwOB_D3-LKut8gAEPVmhtN7Yx6uGtOUFYJPzxGG0CjxNgVxYg2y74_wX4B2uAjtQ</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Yoshii, Tadashi</creator><creator>Fukumori, Tomoharu</creator><creator>Honjo, Yuichiro</creator><creator>Inohara, Hidenori</creator><creator>Kim, Hyeong-Reh Choi</creator><creator>Raz, Avraham</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20020301</creationdate><title>Galectin-3 Phosphorylation Is Required for Its Anti-apoptotic Function and Cell Cycle Arrest</title><author>Yoshii, Tadashi ; Fukumori, Tomoharu ; Honjo, Yuichiro ; Inohara, Hidenori ; Kim, Hyeong-Reh Choi ; Raz, Avraham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-be7f752eb1b0c0b03b91df353688c1620e60cbaf735e675ce1b54376f8c43b813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Anoikis</topic><topic>Antigens, Differentiation - metabolism</topic><topic>Apoptosis</topic><topic>b-galactoside-binding protein</topic><topic>Binding Sites</topic><topic>Blotting, Western</topic><topic>Casein Kinases</topic><topic>Cell Cycle</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Cisplatin - pharmacology</topic><topic>Cyclin A - metabolism</topic><topic>Cyclin-Dependent Kinase Inhibitor p21</topic><topic>Cyclins - metabolism</topic><topic>DNA - metabolism</topic><topic>DNA, Complementary - metabolism</topic><topic>Down-Regulation</topic><topic>Galectin 3</topic><topic>Humans</topic><topic>KIP1 gene</topic><topic>Ligands</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Precipitin Tests</topic><topic>Protein Binding</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Structure, Tertiary</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Serine - chemistry</topic><topic>Signal Transduction</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Tumor Cells, Cultured</topic><topic>Up-Regulation</topic><topic>WAF1/CIP1 gene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshii, Tadashi</creatorcontrib><creatorcontrib>Fukumori, Tomoharu</creatorcontrib><creatorcontrib>Honjo, Yuichiro</creatorcontrib><creatorcontrib>Inohara, Hidenori</creatorcontrib><creatorcontrib>Kim, Hyeong-Reh Choi</creatorcontrib><creatorcontrib>Raz, Avraham</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshii, Tadashi</au><au>Fukumori, Tomoharu</au><au>Honjo, Yuichiro</au><au>Inohara, Hidenori</au><au>Kim, Hyeong-Reh Choi</au><au>Raz, Avraham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galectin-3 Phosphorylation Is Required for Its Anti-apoptotic Function and Cell Cycle Arrest</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2002-03-01</date><risdate>2002</risdate><volume>277</volume><issue>9</issue><spage>6852</spage><epage>6857</epage><pages>6852-6857</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Galectin-3, a β-galactoside-binding protein, is implicated in cell growth, adhesion, differentiation, and tumor progression by interactions with its ligands. Recent studies have revealed that galectin-3 suppresses apoptosis and anoikis that contribute to cell survival during metastatic cascades. Previously, it has been shown that human galectin-3 undergoes post-translational signaling modification of Ser6 phosphorylation that acts as an “on/off” switch for its sugar-binding capability. We questioned whether galectin-3 phosphorylation is required for its anti-apoptotic function. Serine to alanine (S6A) and serine to glutamic acid (S6E) mutations were produced at the casein kinase I phosphorylation site in galectin-3. The cDNAs were transfected into a breast carcinoma cell line BT-549 that innately expresses no galectin-3. Metabolic labeling revealed that only wild type galectin-3 undergoes phosphorylation in vivo. Expression of Ser6 mutants of galectin-3 failed to protect cells from cisplatin-induced cell death and poly(ADP-ribose) polymerase from degradation when compared with wild type galectin-3. The non-phosphorylated galectin-3 mutants failed to protect cells from anoikis with G1 arrest when cells were cultured in suspension. In response to a loss of cell-substrate interactions, only cells expressing wild type galectin-3 down-regulated cyclin A expression and up-regulated cyclin D1 and cyclin-dependent kinase inhibitors, i.e.p21WAF1/CIP1 and p27KIP1 expression levels. These results demonstrate that galectin-3 phosphorylation regulates its anti-apoptotic signaling activity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11724777</pmid><doi>10.1074/jbc.M107668200</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2002-03, Vol.277 (9), p.6852-6857
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_18274432
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Anoikis
Antigens, Differentiation - metabolism
Apoptosis
b-galactoside-binding protein
Binding Sites
Blotting, Western
Casein Kinases
Cell Cycle
Cell Line
Cell Survival
Cisplatin - pharmacology
Cyclin A - metabolism
Cyclin-Dependent Kinase Inhibitor p21
Cyclins - metabolism
DNA - metabolism
DNA, Complementary - metabolism
Down-Regulation
Galectin 3
Humans
KIP1 gene
Ligands
Mutagenesis, Site-Directed
Mutation
Phosphorylation
Precipitin Tests
Protein Binding
Protein Kinases - metabolism
Protein Processing, Post-Translational
Protein Structure, Tertiary
Proto-Oncogene Proteins c-bcl-2 - metabolism
Serine - chemistry
Signal Transduction
Time Factors
Transfection
Tumor Cells, Cultured
Up-Regulation
WAF1/CIP1 gene
title Galectin-3 Phosphorylation Is Required for Its Anti-apoptotic Function and Cell Cycle Arrest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galectin-3%20Phosphorylation%20Is%20Required%20for%20Its%20Anti-apoptotic%20Function%20and%20Cell%20Cycle%20Arrest&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yoshii,%20Tadashi&rft.date=2002-03-01&rft.volume=277&rft.issue=9&rft.spage=6852&rft.epage=6857&rft.pages=6852-6857&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M107668200&rft_dat=%3Cproquest_cross%3E18274432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18274432&rft_id=info:pmid/11724777&rft_els_id=S0021925819822305&rfr_iscdi=true