Deep learning in bioinformatics

Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2017-09, Vol.18 (5), p.851-869
Hauptverfasser: Min, Seonwoo, Lee, Byunghan, Yoon, Sungroh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 5
container_start_page 851
container_title Briefings in bioinformatics
container_volume 18
creator Min, Seonwoo
Lee, Byunghan
Yoon, Sungroh
description Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.
doi_str_mv 10.1093/bib/bbw068
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826740389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbw068</oup_id><sourcerecordid>1826740389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-5b2d8add2bb36fa48318138c153292b81f44482425c22da9870845a8af5ca2a73</originalsourceid><addsrcrecordid>eNp90EtLAzEUhuEgiq3VjT9ACyKIMDY5OZlkllKvUHCj65DMZCRlbiYdxH_vlKkuXLhKFg8fh5eQU0ZvGM34wnq7sPaTpmqPTBlKmSAVuL_9pzIRmPIJOYpxTSlQqdghmYBEyWmKU3J-51w3r5wJjW_e576ZW9_6pmxDbTY-j8fkoDRVdCe7d0beHu5fl0_J6uXxeXm7SnIE2CTCQqFMUYC1PC0NKs4U4ypngkMGVrESERUgiBygMJmSVKEwypQiN2Akn5GrcbcL7Ufv4kbXPuauqkzj2j5qpiCVSLnKBnrxh67bPjTDdRo4FTSTiGJQ16PKQxtjcKXugq9N-NKM6m02PWTTY7YBn-0me1u74pf-dBrA5Qjavvtv6BvWPXIy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305097445</pqid></control><display><type>article</type><title>Deep learning in bioinformatics</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Min, Seonwoo ; Lee, Byunghan ; Yoon, Sungroh</creator><creatorcontrib>Min, Seonwoo ; Lee, Byunghan ; Yoon, Sungroh</creatorcontrib><description>Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbw068</identifier><identifier>PMID: 27473064</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Artificial neural networks ; Big Data ; Bioinformatics ; Biomedical data ; Computational Biology ; Data management ; Deep learning ; Humans ; Machine Learning ; Medical imaging ; Neural networks ; Neural Networks (Computer) ; Recurrent neural networks ; Signal processing</subject><ispartof>Briefings in bioinformatics, 2017-09, Vol.18 (5), p.851-869</ispartof><rights>The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016</rights><rights>The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-5b2d8add2bb36fa48318138c153292b81f44482425c22da9870845a8af5ca2a73</citedby><cites>FETCH-LOGICAL-c422t-5b2d8add2bb36fa48318138c153292b81f44482425c22da9870845a8af5ca2a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1605,27929,27930</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbw068$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27473064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Seonwoo</creatorcontrib><creatorcontrib>Lee, Byunghan</creatorcontrib><creatorcontrib>Yoon, Sungroh</creatorcontrib><title>Deep learning in bioinformatics</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.</description><subject>Artificial neural networks</subject><subject>Big Data</subject><subject>Bioinformatics</subject><subject>Biomedical data</subject><subject>Computational Biology</subject><subject>Data management</subject><subject>Deep learning</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Recurrent neural networks</subject><subject>Signal processing</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EtLAzEUhuEgiq3VjT9ACyKIMDY5OZlkllKvUHCj65DMZCRlbiYdxH_vlKkuXLhKFg8fh5eQU0ZvGM34wnq7sPaTpmqPTBlKmSAVuL_9pzIRmPIJOYpxTSlQqdghmYBEyWmKU3J-51w3r5wJjW_e576ZW9_6pmxDbTY-j8fkoDRVdCe7d0beHu5fl0_J6uXxeXm7SnIE2CTCQqFMUYC1PC0NKs4U4ypngkMGVrESERUgiBygMJmSVKEwypQiN2Akn5GrcbcL7Ufv4kbXPuauqkzj2j5qpiCVSLnKBnrxh67bPjTDdRo4FTSTiGJQ16PKQxtjcKXugq9N-NKM6m02PWTTY7YBn-0me1u74pf-dBrA5Qjavvtv6BvWPXIy</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Min, Seonwoo</creator><creator>Lee, Byunghan</creator><creator>Yoon, Sungroh</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170901</creationdate><title>Deep learning in bioinformatics</title><author>Min, Seonwoo ; Lee, Byunghan ; Yoon, Sungroh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-5b2d8add2bb36fa48318138c153292b81f44482425c22da9870845a8af5ca2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Big Data</topic><topic>Bioinformatics</topic><topic>Biomedical data</topic><topic>Computational Biology</topic><topic>Data management</topic><topic>Deep learning</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Recurrent neural networks</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Seonwoo</creatorcontrib><creatorcontrib>Lee, Byunghan</creatorcontrib><creatorcontrib>Yoon, Sungroh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Min, Seonwoo</au><au>Lee, Byunghan</au><au>Yoon, Sungroh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning in bioinformatics</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>18</volume><issue>5</issue><spage>851</spage><epage>869</epage><pages>851-869</pages><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27473064</pmid><doi>10.1093/bib/bbw068</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2017-09, Vol.18 (5), p.851-869
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_1826740389
source Access via Oxford University Press (Open Access Collection)
subjects Artificial neural networks
Big Data
Bioinformatics
Biomedical data
Computational Biology
Data management
Deep learning
Humans
Machine Learning
Medical imaging
Neural networks
Neural Networks (Computer)
Recurrent neural networks
Signal processing
title Deep learning in bioinformatics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20in%20bioinformatics&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Min,%20Seonwoo&rft.date=2017-09-01&rft.volume=18&rft.issue=5&rft.spage=851&rft.epage=869&rft.pages=851-869&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbw068&rft_dat=%3Cproquest_TOX%3E1826740389%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305097445&rft_id=info:pmid/27473064&rft_oup_id=10.1093/bib/bbw068&rfr_iscdi=true