Deep learning in bioinformatics
Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, a...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2017-09, Vol.18 (5), p.851-869 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 869 |
---|---|
container_issue | 5 |
container_start_page | 851 |
container_title | Briefings in bioinformatics |
container_volume | 18 |
creator | Min, Seonwoo Lee, Byunghan Yoon, Sungroh |
description | Abstract
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. |
doi_str_mv | 10.1093/bib/bbw068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826740389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbw068</oup_id><sourcerecordid>1826740389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-5b2d8add2bb36fa48318138c153292b81f44482425c22da9870845a8af5ca2a73</originalsourceid><addsrcrecordid>eNp90EtLAzEUhuEgiq3VjT9ACyKIMDY5OZlkllKvUHCj65DMZCRlbiYdxH_vlKkuXLhKFg8fh5eQU0ZvGM34wnq7sPaTpmqPTBlKmSAVuL_9pzIRmPIJOYpxTSlQqdghmYBEyWmKU3J-51w3r5wJjW_e576ZW9_6pmxDbTY-j8fkoDRVdCe7d0beHu5fl0_J6uXxeXm7SnIE2CTCQqFMUYC1PC0NKs4U4ypngkMGVrESERUgiBygMJmSVKEwypQiN2Akn5GrcbcL7Ufv4kbXPuauqkzj2j5qpiCVSLnKBnrxh67bPjTDdRo4FTSTiGJQ16PKQxtjcKXugq9N-NKM6m02PWTTY7YBn-0me1u74pf-dBrA5Qjavvtv6BvWPXIy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305097445</pqid></control><display><type>article</type><title>Deep learning in bioinformatics</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Min, Seonwoo ; Lee, Byunghan ; Yoon, Sungroh</creator><creatorcontrib>Min, Seonwoo ; Lee, Byunghan ; Yoon, Sungroh</creatorcontrib><description>Abstract
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbw068</identifier><identifier>PMID: 27473064</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Artificial neural networks ; Big Data ; Bioinformatics ; Biomedical data ; Computational Biology ; Data management ; Deep learning ; Humans ; Machine Learning ; Medical imaging ; Neural networks ; Neural Networks (Computer) ; Recurrent neural networks ; Signal processing</subject><ispartof>Briefings in bioinformatics, 2017-09, Vol.18 (5), p.851-869</ispartof><rights>The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016</rights><rights>The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-5b2d8add2bb36fa48318138c153292b81f44482425c22da9870845a8af5ca2a73</citedby><cites>FETCH-LOGICAL-c422t-5b2d8add2bb36fa48318138c153292b81f44482425c22da9870845a8af5ca2a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1605,27929,27930</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbw068$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27473064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Seonwoo</creatorcontrib><creatorcontrib>Lee, Byunghan</creatorcontrib><creatorcontrib>Yoon, Sungroh</creatorcontrib><title>Deep learning in bioinformatics</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.</description><subject>Artificial neural networks</subject><subject>Big Data</subject><subject>Bioinformatics</subject><subject>Biomedical data</subject><subject>Computational Biology</subject><subject>Data management</subject><subject>Deep learning</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Recurrent neural networks</subject><subject>Signal processing</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EtLAzEUhuEgiq3VjT9ACyKIMDY5OZlkllKvUHCj65DMZCRlbiYdxH_vlKkuXLhKFg8fh5eQU0ZvGM34wnq7sPaTpmqPTBlKmSAVuL_9pzIRmPIJOYpxTSlQqdghmYBEyWmKU3J-51w3r5wJjW_e576ZW9_6pmxDbTY-j8fkoDRVdCe7d0beHu5fl0_J6uXxeXm7SnIE2CTCQqFMUYC1PC0NKs4U4ypngkMGVrESERUgiBygMJmSVKEwypQiN2Akn5GrcbcL7Ufv4kbXPuauqkzj2j5qpiCVSLnKBnrxh67bPjTDdRo4FTSTiGJQ16PKQxtjcKXugq9N-NKM6m02PWTTY7YBn-0me1u74pf-dBrA5Qjavvtv6BvWPXIy</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Min, Seonwoo</creator><creator>Lee, Byunghan</creator><creator>Yoon, Sungroh</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170901</creationdate><title>Deep learning in bioinformatics</title><author>Min, Seonwoo ; Lee, Byunghan ; Yoon, Sungroh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-5b2d8add2bb36fa48318138c153292b81f44482425c22da9870845a8af5ca2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Big Data</topic><topic>Bioinformatics</topic><topic>Biomedical data</topic><topic>Computational Biology</topic><topic>Data management</topic><topic>Deep learning</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Recurrent neural networks</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Seonwoo</creatorcontrib><creatorcontrib>Lee, Byunghan</creatorcontrib><creatorcontrib>Yoon, Sungroh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Min, Seonwoo</au><au>Lee, Byunghan</au><au>Yoon, Sungroh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning in bioinformatics</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>18</volume><issue>5</issue><spage>851</spage><epage>869</epage><pages>851-869</pages><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27473064</pmid><doi>10.1093/bib/bbw068</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2017-09, Vol.18 (5), p.851-869 |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826740389 |
source | Access via Oxford University Press (Open Access Collection) |
subjects | Artificial neural networks Big Data Bioinformatics Biomedical data Computational Biology Data management Deep learning Humans Machine Learning Medical imaging Neural networks Neural Networks (Computer) Recurrent neural networks Signal processing |
title | Deep learning in bioinformatics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20in%20bioinformatics&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Min,%20Seonwoo&rft.date=2017-09-01&rft.volume=18&rft.issue=5&rft.spage=851&rft.epage=869&rft.pages=851-869&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbw068&rft_dat=%3Cproquest_TOX%3E1826740389%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305097445&rft_id=info:pmid/27473064&rft_oup_id=10.1093/bib/bbw068&rfr_iscdi=true |