FAMA: A Molecular Link between Stomata and Myrosin Cells
Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Alt...
Gespeichert in:
Veröffentlicht in: | Trends in plant science 2016-10, Vol.21 (10), p.861-871 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 871 |
---|---|
container_issue | 10 |
container_start_page | 861 |
container_title | Trends in plant science |
container_volume | 21 |
creator | Shirakawa, Makoto Ueda, Haruko Shimada, Tomoo Hara-Nishimura, Ikuko |
description | Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis.
Myrosin cells in Arabidopsis thaliana provide a valuable model for studying idioblast development.
The bHLH transcription factor FAMA is an essential component for the differentiation of ground meristem cells (stem cells in inner tissues) into myrosin cells. This finding indicates that a common regulatory pathway generates two distinct cell types in leaves: epidermal GCs and inner-tissue myrosin cells.
Auxin accumulation and/or flux levels are required for the cell fate determination process that selects the myrosin lineage cells from a pool of ground meristem cells. In particular, the endocytosis-dependent polar localization of the auxin efflux carrier PIN1 has a critical role in suppressing myrosin cell development. |
doi_str_mv | 10.1016/j.tplants.2016.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826739796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1360138516300759</els_id><sourcerecordid>1826739796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-c3fcd94e074c6931b7b574a25e4a457e566e66b6912cc9179e58a7d918cf095b3</originalsourceid><addsrcrecordid>eNqFkE9PwzAMxSMEYjD4CKAcubQkTRs3XNA0MUDaxAE4R2nqShn9M5oWtG9Ppg2unGxL79nPP0KuOIs54_J2HQ-b2rSDj5MwxgxixsQROeM55FEqIDkOvZAs4iLPJuTc-zVjDHguT8kkgRRAJfKM5IvZanZHZ3TV1WjH2vR06doPWuDwjdjS16FrzGCoaUu62vaddy2dY137C3JSmdrj5aFOyfvi4W3-FC1fHp_ns2VkU8GHyIrKlipFBqmVSvACigxSk2SYmjQDzKREKQupeGKt4qAwyw2Uiue2YiorxJTc7Pdu-u5zRD_oxnkbEpgWu9FrnicShAIlgzTbS23I6Xus9KZ3jem3mjO9g6bX-gBN76BpBjpAC77rw4mxaLD8c_1SCoL7vQDDo18Oe-2tw9Zi6Xq0gy4798-JH8CHfjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826739796</pqid></control><display><type>article</type><title>FAMA: A Molecular Link between Stomata and Myrosin Cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Shirakawa, Makoto ; Ueda, Haruko ; Shimada, Tomoo ; Hara-Nishimura, Ikuko</creator><creatorcontrib>Shirakawa, Makoto ; Ueda, Haruko ; Shimada, Tomoo ; Hara-Nishimura, Ikuko</creatorcontrib><description>Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis.
Myrosin cells in Arabidopsis thaliana provide a valuable model for studying idioblast development.
The bHLH transcription factor FAMA is an essential component for the differentiation of ground meristem cells (stem cells in inner tissues) into myrosin cells. This finding indicates that a common regulatory pathway generates two distinct cell types in leaves: epidermal GCs and inner-tissue myrosin cells.
Auxin accumulation and/or flux levels are required for the cell fate determination process that selects the myrosin lineage cells from a pool of ground meristem cells. In particular, the endocytosis-dependent polar localization of the auxin efflux carrier PIN1 has a critical role in suppressing myrosin cell development.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2016.07.003</identifier><identifier>PMID: 27477926</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - physiology ; bHLH transcription factor ; Brassicaceae - cytology ; Brassicaceae - genetics ; Brassicaceae - physiology ; cell differentiation ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; FAMA ; Gene Expression Regulation, Plant - genetics ; Gene Expression Regulation, Plant - physiology ; ICE1/SCREAM ; myrosin cell ; Plant Leaves - cytology ; Plant Leaves - physiology ; Plant Proteins - physiology ; Plant Stomata - physiology ; stomata</subject><ispartof>Trends in plant science, 2016-10, Vol.21 (10), p.861-871</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-c3fcd94e074c6931b7b574a25e4a457e566e66b6912cc9179e58a7d918cf095b3</citedby><cites>FETCH-LOGICAL-c431t-c3fcd94e074c6931b7b574a25e4a457e566e66b6912cc9179e58a7d918cf095b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tplants.2016.07.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27477926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirakawa, Makoto</creatorcontrib><creatorcontrib>Ueda, Haruko</creatorcontrib><creatorcontrib>Shimada, Tomoo</creatorcontrib><creatorcontrib>Hara-Nishimura, Ikuko</creatorcontrib><title>FAMA: A Molecular Link between Stomata and Myrosin Cells</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis.
Myrosin cells in Arabidopsis thaliana provide a valuable model for studying idioblast development.
The bHLH transcription factor FAMA is an essential component for the differentiation of ground meristem cells (stem cells in inner tissues) into myrosin cells. This finding indicates that a common regulatory pathway generates two distinct cell types in leaves: epidermal GCs and inner-tissue myrosin cells.
Auxin accumulation and/or flux levels are required for the cell fate determination process that selects the myrosin lineage cells from a pool of ground meristem cells. In particular, the endocytosis-dependent polar localization of the auxin efflux carrier PIN1 has a critical role in suppressing myrosin cell development.</description><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - physiology</subject><subject>bHLH transcription factor</subject><subject>Brassicaceae - cytology</subject><subject>Brassicaceae - genetics</subject><subject>Brassicaceae - physiology</subject><subject>cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>FAMA</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>ICE1/SCREAM</subject><subject>myrosin cell</subject><subject>Plant Leaves - cytology</subject><subject>Plant Leaves - physiology</subject><subject>Plant Proteins - physiology</subject><subject>Plant Stomata - physiology</subject><subject>stomata</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9PwzAMxSMEYjD4CKAcubQkTRs3XNA0MUDaxAE4R2nqShn9M5oWtG9Ppg2unGxL79nPP0KuOIs54_J2HQ-b2rSDj5MwxgxixsQROeM55FEqIDkOvZAs4iLPJuTc-zVjDHguT8kkgRRAJfKM5IvZanZHZ3TV1WjH2vR06doPWuDwjdjS16FrzGCoaUu62vaddy2dY137C3JSmdrj5aFOyfvi4W3-FC1fHp_ns2VkU8GHyIrKlipFBqmVSvACigxSk2SYmjQDzKREKQupeGKt4qAwyw2Uiue2YiorxJTc7Pdu-u5zRD_oxnkbEpgWu9FrnicShAIlgzTbS23I6Xus9KZ3jem3mjO9g6bX-gBN76BpBjpAC77rw4mxaLD8c_1SCoL7vQDDo18Oe-2tw9Zi6Xq0gy4798-JH8CHfjw</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Shirakawa, Makoto</creator><creator>Ueda, Haruko</creator><creator>Shimada, Tomoo</creator><creator>Hara-Nishimura, Ikuko</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201610</creationdate><title>FAMA: A Molecular Link between Stomata and Myrosin Cells</title><author>Shirakawa, Makoto ; Ueda, Haruko ; Shimada, Tomoo ; Hara-Nishimura, Ikuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-c3fcd94e074c6931b7b574a25e4a457e566e66b6912cc9179e58a7d918cf095b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - physiology</topic><topic>bHLH transcription factor</topic><topic>Brassicaceae - cytology</topic><topic>Brassicaceae - genetics</topic><topic>Brassicaceae - physiology</topic><topic>cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>FAMA</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>ICE1/SCREAM</topic><topic>myrosin cell</topic><topic>Plant Leaves - cytology</topic><topic>Plant Leaves - physiology</topic><topic>Plant Proteins - physiology</topic><topic>Plant Stomata - physiology</topic><topic>stomata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirakawa, Makoto</creatorcontrib><creatorcontrib>Ueda, Haruko</creatorcontrib><creatorcontrib>Shimada, Tomoo</creatorcontrib><creatorcontrib>Hara-Nishimura, Ikuko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirakawa, Makoto</au><au>Ueda, Haruko</au><au>Shimada, Tomoo</au><au>Hara-Nishimura, Ikuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAMA: A Molecular Link between Stomata and Myrosin Cells</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2016-10</date><risdate>2016</risdate><volume>21</volume><issue>10</issue><spage>861</spage><epage>871</epage><pages>861-871</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis.
Myrosin cells in Arabidopsis thaliana provide a valuable model for studying idioblast development.
The bHLH transcription factor FAMA is an essential component for the differentiation of ground meristem cells (stem cells in inner tissues) into myrosin cells. This finding indicates that a common regulatory pathway generates two distinct cell types in leaves: epidermal GCs and inner-tissue myrosin cells.
Auxin accumulation and/or flux levels are required for the cell fate determination process that selects the myrosin lineage cells from a pool of ground meristem cells. In particular, the endocytosis-dependent polar localization of the auxin efflux carrier PIN1 has a critical role in suppressing myrosin cell development.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27477926</pmid><doi>10.1016/j.tplants.2016.07.003</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1360-1385 |
ispartof | Trends in plant science, 2016-10, Vol.21 (10), p.861-871 |
issn | 1360-1385 1878-4372 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826739796 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - physiology bHLH transcription factor Brassicaceae - cytology Brassicaceae - genetics Brassicaceae - physiology cell differentiation Cell Differentiation - genetics Cell Differentiation - physiology FAMA Gene Expression Regulation, Plant - genetics Gene Expression Regulation, Plant - physiology ICE1/SCREAM myrosin cell Plant Leaves - cytology Plant Leaves - physiology Plant Proteins - physiology Plant Stomata - physiology stomata |
title | FAMA: A Molecular Link between Stomata and Myrosin Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAMA:%20A%20Molecular%20Link%20between%20Stomata%20and%20Myrosin%20Cells&rft.jtitle=Trends%20in%20plant%20science&rft.au=Shirakawa,%20Makoto&rft.date=2016-10&rft.volume=21&rft.issue=10&rft.spage=861&rft.epage=871&rft.pages=861-871&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2016.07.003&rft_dat=%3Cproquest_cross%3E1826739796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826739796&rft_id=info:pmid/27477926&rft_els_id=S1360138516300759&rfr_iscdi=true |