FAMA: A Molecular Link between Stomata and Myrosin Cells

Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Alt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in plant science 2016-10, Vol.21 (10), p.861-871
Hauptverfasser: Shirakawa, Makoto, Ueda, Haruko, Shimada, Tomoo, Hara-Nishimura, Ikuko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 871
container_issue 10
container_start_page 861
container_title Trends in plant science
container_volume 21
creator Shirakawa, Makoto
Ueda, Haruko
Shimada, Tomoo
Hara-Nishimura, Ikuko
description Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis. Myrosin cells in Arabidopsis thaliana provide a valuable model for studying idioblast development. The bHLH transcription factor FAMA is an essential component for the differentiation of ground meristem cells (stem cells in inner tissues) into myrosin cells. This finding indicates that a common regulatory pathway generates two distinct cell types in leaves: epidermal GCs and inner-tissue myrosin cells. Auxin accumulation and/or flux levels are required for the cell fate determination process that selects the myrosin lineage cells from a pool of ground meristem cells. In particular, the endocytosis-dependent polar localization of the auxin efflux carrier PIN1 has a critical role in suppressing myrosin cell development.
doi_str_mv 10.1016/j.tplants.2016.07.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826739796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1360138516300759</els_id><sourcerecordid>1826739796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-c3fcd94e074c6931b7b574a25e4a457e566e66b6912cc9179e58a7d918cf095b3</originalsourceid><addsrcrecordid>eNqFkE9PwzAMxSMEYjD4CKAcubQkTRs3XNA0MUDaxAE4R2nqShn9M5oWtG9Ppg2unGxL79nPP0KuOIs54_J2HQ-b2rSDj5MwxgxixsQROeM55FEqIDkOvZAs4iLPJuTc-zVjDHguT8kkgRRAJfKM5IvZanZHZ3TV1WjH2vR06doPWuDwjdjS16FrzGCoaUu62vaddy2dY137C3JSmdrj5aFOyfvi4W3-FC1fHp_ns2VkU8GHyIrKlipFBqmVSvACigxSk2SYmjQDzKREKQupeGKt4qAwyw2Uiue2YiorxJTc7Pdu-u5zRD_oxnkbEpgWu9FrnicShAIlgzTbS23I6Xus9KZ3jem3mjO9g6bX-gBN76BpBjpAC77rw4mxaLD8c_1SCoL7vQDDo18Oe-2tw9Zi6Xq0gy4798-JH8CHfjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826739796</pqid></control><display><type>article</type><title>FAMA: A Molecular Link between Stomata and Myrosin Cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Shirakawa, Makoto ; Ueda, Haruko ; Shimada, Tomoo ; Hara-Nishimura, Ikuko</creator><creatorcontrib>Shirakawa, Makoto ; Ueda, Haruko ; Shimada, Tomoo ; Hara-Nishimura, Ikuko</creatorcontrib><description>Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis. Myrosin cells in Arabidopsis thaliana provide a valuable model for studying idioblast development. The bHLH transcription factor FAMA is an essential component for the differentiation of ground meristem cells (stem cells in inner tissues) into myrosin cells. This finding indicates that a common regulatory pathway generates two distinct cell types in leaves: epidermal GCs and inner-tissue myrosin cells. Auxin accumulation and/or flux levels are required for the cell fate determination process that selects the myrosin lineage cells from a pool of ground meristem cells. In particular, the endocytosis-dependent polar localization of the auxin efflux carrier PIN1 has a critical role in suppressing myrosin cell development.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2016.07.003</identifier><identifier>PMID: 27477926</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - physiology ; bHLH transcription factor ; Brassicaceae - cytology ; Brassicaceae - genetics ; Brassicaceae - physiology ; cell differentiation ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; FAMA ; Gene Expression Regulation, Plant - genetics ; Gene Expression Regulation, Plant - physiology ; ICE1/SCREAM ; myrosin cell ; Plant Leaves - cytology ; Plant Leaves - physiology ; Plant Proteins - physiology ; Plant Stomata - physiology ; stomata</subject><ispartof>Trends in plant science, 2016-10, Vol.21 (10), p.861-871</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-c3fcd94e074c6931b7b574a25e4a457e566e66b6912cc9179e58a7d918cf095b3</citedby><cites>FETCH-LOGICAL-c431t-c3fcd94e074c6931b7b574a25e4a457e566e66b6912cc9179e58a7d918cf095b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tplants.2016.07.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27477926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirakawa, Makoto</creatorcontrib><creatorcontrib>Ueda, Haruko</creatorcontrib><creatorcontrib>Shimada, Tomoo</creatorcontrib><creatorcontrib>Hara-Nishimura, Ikuko</creatorcontrib><title>FAMA: A Molecular Link between Stomata and Myrosin Cells</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis. Myrosin cells in Arabidopsis thaliana provide a valuable model for studying idioblast development. The bHLH transcription factor FAMA is an essential component for the differentiation of ground meristem cells (stem cells in inner tissues) into myrosin cells. This finding indicates that a common regulatory pathway generates two distinct cell types in leaves: epidermal GCs and inner-tissue myrosin cells. Auxin accumulation and/or flux levels are required for the cell fate determination process that selects the myrosin lineage cells from a pool of ground meristem cells. In particular, the endocytosis-dependent polar localization of the auxin efflux carrier PIN1 has a critical role in suppressing myrosin cell development.</description><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - physiology</subject><subject>bHLH transcription factor</subject><subject>Brassicaceae - cytology</subject><subject>Brassicaceae - genetics</subject><subject>Brassicaceae - physiology</subject><subject>cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>FAMA</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>ICE1/SCREAM</subject><subject>myrosin cell</subject><subject>Plant Leaves - cytology</subject><subject>Plant Leaves - physiology</subject><subject>Plant Proteins - physiology</subject><subject>Plant Stomata - physiology</subject><subject>stomata</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9PwzAMxSMEYjD4CKAcubQkTRs3XNA0MUDaxAE4R2nqShn9M5oWtG9Ppg2unGxL79nPP0KuOIs54_J2HQ-b2rSDj5MwxgxixsQROeM55FEqIDkOvZAs4iLPJuTc-zVjDHguT8kkgRRAJfKM5IvZanZHZ3TV1WjH2vR06doPWuDwjdjS16FrzGCoaUu62vaddy2dY137C3JSmdrj5aFOyfvi4W3-FC1fHp_ns2VkU8GHyIrKlipFBqmVSvACigxSk2SYmjQDzKREKQupeGKt4qAwyw2Uiue2YiorxJTc7Pdu-u5zRD_oxnkbEpgWu9FrnicShAIlgzTbS23I6Xus9KZ3jem3mjO9g6bX-gBN76BpBjpAC77rw4mxaLD8c_1SCoL7vQDDo18Oe-2tw9Zi6Xq0gy4798-JH8CHfjw</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Shirakawa, Makoto</creator><creator>Ueda, Haruko</creator><creator>Shimada, Tomoo</creator><creator>Hara-Nishimura, Ikuko</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201610</creationdate><title>FAMA: A Molecular Link between Stomata and Myrosin Cells</title><author>Shirakawa, Makoto ; Ueda, Haruko ; Shimada, Tomoo ; Hara-Nishimura, Ikuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-c3fcd94e074c6931b7b574a25e4a457e566e66b6912cc9179e58a7d918cf095b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - physiology</topic><topic>bHLH transcription factor</topic><topic>Brassicaceae - cytology</topic><topic>Brassicaceae - genetics</topic><topic>Brassicaceae - physiology</topic><topic>cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>FAMA</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>ICE1/SCREAM</topic><topic>myrosin cell</topic><topic>Plant Leaves - cytology</topic><topic>Plant Leaves - physiology</topic><topic>Plant Proteins - physiology</topic><topic>Plant Stomata - physiology</topic><topic>stomata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirakawa, Makoto</creatorcontrib><creatorcontrib>Ueda, Haruko</creatorcontrib><creatorcontrib>Shimada, Tomoo</creatorcontrib><creatorcontrib>Hara-Nishimura, Ikuko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirakawa, Makoto</au><au>Ueda, Haruko</au><au>Shimada, Tomoo</au><au>Hara-Nishimura, Ikuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAMA: A Molecular Link between Stomata and Myrosin Cells</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2016-10</date><risdate>2016</risdate><volume>21</volume><issue>10</issue><spage>861</spage><epage>871</epage><pages>861-871</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis. Myrosin cells in Arabidopsis thaliana provide a valuable model for studying idioblast development. The bHLH transcription factor FAMA is an essential component for the differentiation of ground meristem cells (stem cells in inner tissues) into myrosin cells. This finding indicates that a common regulatory pathway generates two distinct cell types in leaves: epidermal GCs and inner-tissue myrosin cells. Auxin accumulation and/or flux levels are required for the cell fate determination process that selects the myrosin lineage cells from a pool of ground meristem cells. In particular, the endocytosis-dependent polar localization of the auxin efflux carrier PIN1 has a critical role in suppressing myrosin cell development.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27477926</pmid><doi>10.1016/j.tplants.2016.07.003</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1360-1385
ispartof Trends in plant science, 2016-10, Vol.21 (10), p.861-871
issn 1360-1385
1878-4372
language eng
recordid cdi_proquest_miscellaneous_1826739796
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - physiology
bHLH transcription factor
Brassicaceae - cytology
Brassicaceae - genetics
Brassicaceae - physiology
cell differentiation
Cell Differentiation - genetics
Cell Differentiation - physiology
FAMA
Gene Expression Regulation, Plant - genetics
Gene Expression Regulation, Plant - physiology
ICE1/SCREAM
myrosin cell
Plant Leaves - cytology
Plant Leaves - physiology
Plant Proteins - physiology
Plant Stomata - physiology
stomata
title FAMA: A Molecular Link between Stomata and Myrosin Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAMA:%20A%20Molecular%20Link%20between%20Stomata%20and%20Myrosin%20Cells&rft.jtitle=Trends%20in%20plant%20science&rft.au=Shirakawa,%20Makoto&rft.date=2016-10&rft.volume=21&rft.issue=10&rft.spage=861&rft.epage=871&rft.pages=861-871&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2016.07.003&rft_dat=%3Cproquest_cross%3E1826739796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826739796&rft_id=info:pmid/27477926&rft_els_id=S1360138516300759&rfr_iscdi=true