Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes
Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for ca...
Gespeichert in:
Veröffentlicht in: | Progress in lipid research 2016-10, Vol.64, p.1-15 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Progress in lipid research |
container_volume | 64 |
creator | Yoshinaga, Marcos Y. Kellermann, Matthias Y. Valentine, David L. Valentine, Raymond C. |
description | Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase. |
doi_str_mv | 10.1016/j.plipres.2016.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826732620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0163782715300291</els_id><sourcerecordid>1826732620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-5cd88e22b260f30ad00fe69e77f90b4d4b1f45b25f12bfae76e84e1625fbf0263</originalsourceid><addsrcrecordid>eNqFkE1v1DAQQC1ERbeFnwDKkUvC2Els7wmhqkClSvTQni3HGe96ldjBdpCWX4_Lbrlyssbz5usR8p5CQ4HyT4dmmdwSMTWshA2IBoC-IhsqRVszuu1ek01JtLWQTFySq5QOANBLRt-QSya6TnIpNuT3wz6kZR9KLzemSvux2k1H8xLPODqdsVpiyMFXJvisnZ_R57-ocdGsk86u5PQU_K7Ke6zSGq02WAVboce4O9Y5ap_G1bhCzDgPJcT0llxYPSV8d36vydPX28eb7_X9j293N1_ua9MJmevejFIiYwPjYFvQI4BFvkUh7BaGbuwGart-YL2lbLAaBUfZIeXlY7DAeHtNPp76liN-rpiyml0yOE1libAmRSXjomWcQUH7E2piSCmiVUt0s45HRUE9a1cHddaunrUrEKpoL3UfziPWoSj7V_XiuQCfTwCWQ385jCoZh94UvRFNVmNw_xnxBypKmkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826732620</pqid></control><display><type>article</type><title>Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yoshinaga, Marcos Y. ; Kellermann, Matthias Y. ; Valentine, David L. ; Valentine, Raymond C.</creator><creatorcontrib>Yoshinaga, Marcos Y. ; Kellermann, Matthias Y. ; Valentine, David L. ; Valentine, Raymond C.</creatorcontrib><description>Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase.</description><identifier>ISSN: 0163-7827</identifier><identifier>EISSN: 1873-2194</identifier><identifier>DOI: 10.1016/j.plipres.2016.07.001</identifier><identifier>PMID: 27448687</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; Archaea - metabolism ; Bacteria - metabolism ; Cell Membrane - metabolism ; Chloroplasts - metabolism ; Energy Metabolism ; Energy transducing membranes ; Glycerolipids ; Glycolipids ; Glycolipids - metabolism ; Long distance proton transport ; Membrane Microdomains - metabolism ; Mitochondria - metabolism ; Phospholipids ; Phospholipids - metabolism ; Proton bioenergetics ; Proton-Motive Force ; von Grotthuß mechanism</subject><ispartof>Progress in lipid research, 2016-10, Vol.64, p.1-15</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-5cd88e22b260f30ad00fe69e77f90b4d4b1f45b25f12bfae76e84e1625fbf0263</citedby><cites>FETCH-LOGICAL-c478t-5cd88e22b260f30ad00fe69e77f90b4d4b1f45b25f12bfae76e84e1625fbf0263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0163782715300291$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27448687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshinaga, Marcos Y.</creatorcontrib><creatorcontrib>Kellermann, Matthias Y.</creatorcontrib><creatorcontrib>Valentine, David L.</creatorcontrib><creatorcontrib>Valentine, Raymond C.</creatorcontrib><title>Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes</title><title>Progress in lipid research</title><addtitle>Prog Lipid Res</addtitle><description>Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Archaea - metabolism</subject><subject>Bacteria - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Chloroplasts - metabolism</subject><subject>Energy Metabolism</subject><subject>Energy transducing membranes</subject><subject>Glycerolipids</subject><subject>Glycolipids</subject><subject>Glycolipids - metabolism</subject><subject>Long distance proton transport</subject><subject>Membrane Microdomains - metabolism</subject><subject>Mitochondria - metabolism</subject><subject>Phospholipids</subject><subject>Phospholipids - metabolism</subject><subject>Proton bioenergetics</subject><subject>Proton-Motive Force</subject><subject>von Grotthuß mechanism</subject><issn>0163-7827</issn><issn>1873-2194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQQC1ERbeFnwDKkUvC2Els7wmhqkClSvTQni3HGe96ldjBdpCWX4_Lbrlyssbz5usR8p5CQ4HyT4dmmdwSMTWshA2IBoC-IhsqRVszuu1ek01JtLWQTFySq5QOANBLRt-QSya6TnIpNuT3wz6kZR9KLzemSvux2k1H8xLPODqdsVpiyMFXJvisnZ_R57-ocdGsk86u5PQU_K7Ke6zSGq02WAVboce4O9Y5ap_G1bhCzDgPJcT0llxYPSV8d36vydPX28eb7_X9j293N1_ua9MJmevejFIiYwPjYFvQI4BFvkUh7BaGbuwGart-YL2lbLAaBUfZIeXlY7DAeHtNPp76liN-rpiyml0yOE1libAmRSXjomWcQUH7E2piSCmiVUt0s45HRUE9a1cHddaunrUrEKpoL3UfziPWoSj7V_XiuQCfTwCWQ385jCoZh94UvRFNVmNw_xnxBypKmkA</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Yoshinaga, Marcos Y.</creator><creator>Kellermann, Matthias Y.</creator><creator>Valentine, David L.</creator><creator>Valentine, Raymond C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201610</creationdate><title>Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes</title><author>Yoshinaga, Marcos Y. ; Kellermann, Matthias Y. ; Valentine, David L. ; Valentine, Raymond C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-5cd88e22b260f30ad00fe69e77f90b4d4b1f45b25f12bfae76e84e1625fbf0263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Archaea - metabolism</topic><topic>Bacteria - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Chloroplasts - metabolism</topic><topic>Energy Metabolism</topic><topic>Energy transducing membranes</topic><topic>Glycerolipids</topic><topic>Glycolipids</topic><topic>Glycolipids - metabolism</topic><topic>Long distance proton transport</topic><topic>Membrane Microdomains - metabolism</topic><topic>Mitochondria - metabolism</topic><topic>Phospholipids</topic><topic>Phospholipids - metabolism</topic><topic>Proton bioenergetics</topic><topic>Proton-Motive Force</topic><topic>von Grotthuß mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshinaga, Marcos Y.</creatorcontrib><creatorcontrib>Kellermann, Matthias Y.</creatorcontrib><creatorcontrib>Valentine, David L.</creatorcontrib><creatorcontrib>Valentine, Raymond C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in lipid research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshinaga, Marcos Y.</au><au>Kellermann, Matthias Y.</au><au>Valentine, David L.</au><au>Valentine, Raymond C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes</atitle><jtitle>Progress in lipid research</jtitle><addtitle>Prog Lipid Res</addtitle><date>2016-10</date><risdate>2016</risdate><volume>64</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0163-7827</issn><eissn>1873-2194</eissn><abstract>Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27448687</pmid><doi>10.1016/j.plipres.2016.07.001</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-7827 |
ispartof | Progress in lipid research, 2016-10, Vol.64, p.1-15 |
issn | 0163-7827 1873-2194 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826732620 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adenosine Triphosphate - metabolism Archaea - metabolism Bacteria - metabolism Cell Membrane - metabolism Chloroplasts - metabolism Energy Metabolism Energy transducing membranes Glycerolipids Glycolipids Glycolipids - metabolism Long distance proton transport Membrane Microdomains - metabolism Mitochondria - metabolism Phospholipids Phospholipids - metabolism Proton bioenergetics Proton-Motive Force von Grotthuß mechanism |
title | Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipids%20and%20glycolipids%20mediate%20proton%20containment%20and%20circulation%20along%20the%20surface%20of%20energy-transducing%20membranes&rft.jtitle=Progress%20in%20lipid%20research&rft.au=Yoshinaga,%20Marcos%20Y.&rft.date=2016-10&rft.volume=64&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0163-7827&rft.eissn=1873-2194&rft_id=info:doi/10.1016/j.plipres.2016.07.001&rft_dat=%3Cproquest_cross%3E1826732620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826732620&rft_id=info:pmid/27448687&rft_els_id=S0163782715300291&rfr_iscdi=true |