Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes

Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in lipid research 2016-10, Vol.64, p.1-15
Hauptverfasser: Yoshinaga, Marcos Y., Kellermann, Matthias Y., Valentine, David L., Valentine, Raymond C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title Progress in lipid research
container_volume 64
creator Yoshinaga, Marcos Y.
Kellermann, Matthias Y.
Valentine, David L.
Valentine, Raymond C.
description Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase.
doi_str_mv 10.1016/j.plipres.2016.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826732620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0163782715300291</els_id><sourcerecordid>1826732620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-5cd88e22b260f30ad00fe69e77f90b4d4b1f45b25f12bfae76e84e1625fbf0263</originalsourceid><addsrcrecordid>eNqFkE1v1DAQQC1ERbeFnwDKkUvC2Els7wmhqkClSvTQni3HGe96ldjBdpCWX4_Lbrlyssbz5usR8p5CQ4HyT4dmmdwSMTWshA2IBoC-IhsqRVszuu1ek01JtLWQTFySq5QOANBLRt-QSya6TnIpNuT3wz6kZR9KLzemSvux2k1H8xLPODqdsVpiyMFXJvisnZ_R57-ocdGsk86u5PQU_K7Ke6zSGq02WAVboce4O9Y5ap_G1bhCzDgPJcT0llxYPSV8d36vydPX28eb7_X9j293N1_ua9MJmevejFIiYwPjYFvQI4BFvkUh7BaGbuwGart-YL2lbLAaBUfZIeXlY7DAeHtNPp76liN-rpiyml0yOE1libAmRSXjomWcQUH7E2piSCmiVUt0s45HRUE9a1cHddaunrUrEKpoL3UfziPWoSj7V_XiuQCfTwCWQ385jCoZh94UvRFNVmNw_xnxBypKmkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826732620</pqid></control><display><type>article</type><title>Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yoshinaga, Marcos Y. ; Kellermann, Matthias Y. ; Valentine, David L. ; Valentine, Raymond C.</creator><creatorcontrib>Yoshinaga, Marcos Y. ; Kellermann, Matthias Y. ; Valentine, David L. ; Valentine, Raymond C.</creatorcontrib><description>Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase.</description><identifier>ISSN: 0163-7827</identifier><identifier>EISSN: 1873-2194</identifier><identifier>DOI: 10.1016/j.plipres.2016.07.001</identifier><identifier>PMID: 27448687</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; Archaea - metabolism ; Bacteria - metabolism ; Cell Membrane - metabolism ; Chloroplasts - metabolism ; Energy Metabolism ; Energy transducing membranes ; Glycerolipids ; Glycolipids ; Glycolipids - metabolism ; Long distance proton transport ; Membrane Microdomains - metabolism ; Mitochondria - metabolism ; Phospholipids ; Phospholipids - metabolism ; Proton bioenergetics ; Proton-Motive Force ; von Grotthuß mechanism</subject><ispartof>Progress in lipid research, 2016-10, Vol.64, p.1-15</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-5cd88e22b260f30ad00fe69e77f90b4d4b1f45b25f12bfae76e84e1625fbf0263</citedby><cites>FETCH-LOGICAL-c478t-5cd88e22b260f30ad00fe69e77f90b4d4b1f45b25f12bfae76e84e1625fbf0263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0163782715300291$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27448687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshinaga, Marcos Y.</creatorcontrib><creatorcontrib>Kellermann, Matthias Y.</creatorcontrib><creatorcontrib>Valentine, David L.</creatorcontrib><creatorcontrib>Valentine, Raymond C.</creatorcontrib><title>Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes</title><title>Progress in lipid research</title><addtitle>Prog Lipid Res</addtitle><description>Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Archaea - metabolism</subject><subject>Bacteria - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Chloroplasts - metabolism</subject><subject>Energy Metabolism</subject><subject>Energy transducing membranes</subject><subject>Glycerolipids</subject><subject>Glycolipids</subject><subject>Glycolipids - metabolism</subject><subject>Long distance proton transport</subject><subject>Membrane Microdomains - metabolism</subject><subject>Mitochondria - metabolism</subject><subject>Phospholipids</subject><subject>Phospholipids - metabolism</subject><subject>Proton bioenergetics</subject><subject>Proton-Motive Force</subject><subject>von Grotthuß mechanism</subject><issn>0163-7827</issn><issn>1873-2194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQQC1ERbeFnwDKkUvC2Els7wmhqkClSvTQni3HGe96ldjBdpCWX4_Lbrlyssbz5usR8p5CQ4HyT4dmmdwSMTWshA2IBoC-IhsqRVszuu1ek01JtLWQTFySq5QOANBLRt-QSya6TnIpNuT3wz6kZR9KLzemSvux2k1H8xLPODqdsVpiyMFXJvisnZ_R57-ocdGsk86u5PQU_K7Ke6zSGq02WAVboce4O9Y5ap_G1bhCzDgPJcT0llxYPSV8d36vydPX28eb7_X9j293N1_ua9MJmevejFIiYwPjYFvQI4BFvkUh7BaGbuwGart-YL2lbLAaBUfZIeXlY7DAeHtNPp76liN-rpiyml0yOE1libAmRSXjomWcQUH7E2piSCmiVUt0s45HRUE9a1cHddaunrUrEKpoL3UfziPWoSj7V_XiuQCfTwCWQ385jCoZh94UvRFNVmNw_xnxBypKmkA</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Yoshinaga, Marcos Y.</creator><creator>Kellermann, Matthias Y.</creator><creator>Valentine, David L.</creator><creator>Valentine, Raymond C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201610</creationdate><title>Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes</title><author>Yoshinaga, Marcos Y. ; Kellermann, Matthias Y. ; Valentine, David L. ; Valentine, Raymond C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-5cd88e22b260f30ad00fe69e77f90b4d4b1f45b25f12bfae76e84e1625fbf0263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Archaea - metabolism</topic><topic>Bacteria - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Chloroplasts - metabolism</topic><topic>Energy Metabolism</topic><topic>Energy transducing membranes</topic><topic>Glycerolipids</topic><topic>Glycolipids</topic><topic>Glycolipids - metabolism</topic><topic>Long distance proton transport</topic><topic>Membrane Microdomains - metabolism</topic><topic>Mitochondria - metabolism</topic><topic>Phospholipids</topic><topic>Phospholipids - metabolism</topic><topic>Proton bioenergetics</topic><topic>Proton-Motive Force</topic><topic>von Grotthuß mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshinaga, Marcos Y.</creatorcontrib><creatorcontrib>Kellermann, Matthias Y.</creatorcontrib><creatorcontrib>Valentine, David L.</creatorcontrib><creatorcontrib>Valentine, Raymond C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in lipid research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshinaga, Marcos Y.</au><au>Kellermann, Matthias Y.</au><au>Valentine, David L.</au><au>Valentine, Raymond C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes</atitle><jtitle>Progress in lipid research</jtitle><addtitle>Prog Lipid Res</addtitle><date>2016-10</date><risdate>2016</risdate><volume>64</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0163-7827</issn><eissn>1873-2194</eissn><abstract>Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27448687</pmid><doi>10.1016/j.plipres.2016.07.001</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0163-7827
ispartof Progress in lipid research, 2016-10, Vol.64, p.1-15
issn 0163-7827
1873-2194
language eng
recordid cdi_proquest_miscellaneous_1826732620
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adenosine Triphosphate - metabolism
Archaea - metabolism
Bacteria - metabolism
Cell Membrane - metabolism
Chloroplasts - metabolism
Energy Metabolism
Energy transducing membranes
Glycerolipids
Glycolipids
Glycolipids - metabolism
Long distance proton transport
Membrane Microdomains - metabolism
Mitochondria - metabolism
Phospholipids
Phospholipids - metabolism
Proton bioenergetics
Proton-Motive Force
von Grotthuß mechanism
title Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipids%20and%20glycolipids%20mediate%20proton%20containment%20and%20circulation%20along%20the%20surface%20of%20energy-transducing%20membranes&rft.jtitle=Progress%20in%20lipid%20research&rft.au=Yoshinaga,%20Marcos%20Y.&rft.date=2016-10&rft.volume=64&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0163-7827&rft.eissn=1873-2194&rft_id=info:doi/10.1016/j.plipres.2016.07.001&rft_dat=%3Cproquest_cross%3E1826732620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826732620&rft_id=info:pmid/27448687&rft_els_id=S0163782715300291&rfr_iscdi=true