Microfluidic microscopy-assisted label-free approach for cancer screening: automated microfluidic cytology for cancer screening

Each year, about 7–8 million deaths occur due to cancer around the world. More than half of the cancer-related deaths occur in the less-developed parts of the world. Cancer mortality rate can be reduced with early detection and subsequent treatment of the disease. In this paper, we introduce a micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2017-05, Vol.55 (5), p.711-718
Hauptverfasser: Jagannadh, Veerendra Kalyan, Gopakumar, G., Subrahmanyam, Gorthi R. K. Sai, Gorthi, Sai Siva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue 5
container_start_page 711
container_title Medical & biological engineering & computing
container_volume 55
creator Jagannadh, Veerendra Kalyan
Gopakumar, G.
Subrahmanyam, Gorthi R. K. Sai
Gorthi, Sai Siva
description Each year, about 7–8 million deaths occur due to cancer around the world. More than half of the cancer-related deaths occur in the less-developed parts of the world. Cancer mortality rate can be reduced with early detection and subsequent treatment of the disease. In this paper, we introduce a microfluidic microscopy-based cost-effective and label-free approach for identification of cancerous cells. We outline a diagnostic framework for the same and detail an instrumentation layout. We have employed classical computer vision techniques such as 2D principal component analysis-based cell type representation followed by support vector machine-based classification. Analogous to criminal face recognition systems implemented with help of surveillance cameras, a signature-based approach for cancerous cell identification using microfluidic microscopy surveillance is demonstrated. Such a platform would facilitate affordable mass screening camps in the developing countries and therefore help decrease cancer mortality rate.
doi_str_mv 10.1007/s11517-016-1549-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826730870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826730870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a40ad2bab45ff7d610f042c998f44c5968b6822468d8d48d5e149704779b1f843</originalsourceid><addsrcrecordid>eNp1kUFP3DAQha2qqGxpf0AvVaReuLjMeCexw61CUJBAvbRny3HsbVASb-3kkBN_HUcLFULtybLe9954_Bj7hPAVAeRZQixRcsCKY0k1X96wDUpCDkT0lm0ACbKK6pi9T-keQGAp6B07FpJISqg37OGuszH4fu7azhbDekk27BduUurS5NqiN43ruY_OFWa_j8HY34UPsbBmtC4WyWZl7MbdeWHmKQxm9QwvQ-0yhT7sln-6PrAjb_rkPj6dJ-zX1eXPi2t---P7zcW3W263UkzcEJhWNKah0nvZVggeSNi6Vp7IlnWlmkoJQZVqVUuqLR1SLSEvWTfoFW1P2OkhN2_wZ3Zp0kOXrOt7M7owJ41KVHILSkJGv7xC78Mcx_y6TOWJIGupMoUHav2xFJ3X-9gNJi4aQa_t6EM7Orej13b0kj2fn5LnZnDtX8dzHRkQByBlady5-GL0f1MfAWMZnKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899807978</pqid></control><display><type>article</type><title>Microfluidic microscopy-assisted label-free approach for cancer screening: automated microfluidic cytology for cancer screening</title><source>MEDLINE</source><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jagannadh, Veerendra Kalyan ; Gopakumar, G. ; Subrahmanyam, Gorthi R. K. Sai ; Gorthi, Sai Siva</creator><creatorcontrib>Jagannadh, Veerendra Kalyan ; Gopakumar, G. ; Subrahmanyam, Gorthi R. K. Sai ; Gorthi, Sai Siva</creatorcontrib><description>Each year, about 7–8 million deaths occur due to cancer around the world. More than half of the cancer-related deaths occur in the less-developed parts of the world. Cancer mortality rate can be reduced with early detection and subsequent treatment of the disease. In this paper, we introduce a microfluidic microscopy-based cost-effective and label-free approach for identification of cancerous cells. We outline a diagnostic framework for the same and detail an instrumentation layout. We have employed classical computer vision techniques such as 2D principal component analysis-based cell type representation followed by support vector machine-based classification. Analogous to criminal face recognition systems implemented with help of surveillance cameras, a signature-based approach for cancerous cell identification using microfluidic microscopy surveillance is demonstrated. Such a platform would facilitate affordable mass screening camps in the developing countries and therefore help decrease cancer mortality rate.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-016-1549-y</identifier><identifier>PMID: 27447709</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Cameras ; Cancer ; Cancer screening ; Computer Applications ; Computer vision ; Cytology ; Developing countries ; Diagnostic systems ; Early Detection of Cancer - methods ; Health and safety screening ; Human Physiology ; Humans ; Imaging ; Instrumentation ; LDCs ; Mammography ; Mass Screening - methods ; Medical screening ; Microfluidics ; Microfluidics - methods ; Microscopy ; Microscopy - methods ; Mortality ; Neoplasms - diagnosis ; Original Article ; Pattern recognition ; Principal components analysis ; Radiology ; Surveillance</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2017-05, Vol.55 (5), p.711-718</ispartof><rights>International Federation for Medical and Biological Engineering 2016</rights><rights>Medical &amp; Biological Engineering &amp; Computing is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a40ad2bab45ff7d610f042c998f44c5968b6822468d8d48d5e149704779b1f843</citedby><cites>FETCH-LOGICAL-c372t-a40ad2bab45ff7d610f042c998f44c5968b6822468d8d48d5e149704779b1f843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-016-1549-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-016-1549-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27447709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jagannadh, Veerendra Kalyan</creatorcontrib><creatorcontrib>Gopakumar, G.</creatorcontrib><creatorcontrib>Subrahmanyam, Gorthi R. K. Sai</creatorcontrib><creatorcontrib>Gorthi, Sai Siva</creatorcontrib><title>Microfluidic microscopy-assisted label-free approach for cancer screening: automated microfluidic cytology for cancer screening</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Each year, about 7–8 million deaths occur due to cancer around the world. More than half of the cancer-related deaths occur in the less-developed parts of the world. Cancer mortality rate can be reduced with early detection and subsequent treatment of the disease. In this paper, we introduce a microfluidic microscopy-based cost-effective and label-free approach for identification of cancerous cells. We outline a diagnostic framework for the same and detail an instrumentation layout. We have employed classical computer vision techniques such as 2D principal component analysis-based cell type representation followed by support vector machine-based classification. Analogous to criminal face recognition systems implemented with help of surveillance cameras, a signature-based approach for cancerous cell identification using microfluidic microscopy surveillance is demonstrated. Such a platform would facilitate affordable mass screening camps in the developing countries and therefore help decrease cancer mortality rate.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Cameras</subject><subject>Cancer</subject><subject>Cancer screening</subject><subject>Computer Applications</subject><subject>Computer vision</subject><subject>Cytology</subject><subject>Developing countries</subject><subject>Diagnostic systems</subject><subject>Early Detection of Cancer - methods</subject><subject>Health and safety screening</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Imaging</subject><subject>Instrumentation</subject><subject>LDCs</subject><subject>Mammography</subject><subject>Mass Screening - methods</subject><subject>Medical screening</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Mortality</subject><subject>Neoplasms - diagnosis</subject><subject>Original Article</subject><subject>Pattern recognition</subject><subject>Principal components analysis</subject><subject>Radiology</subject><subject>Surveillance</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFP3DAQha2qqGxpf0AvVaReuLjMeCexw61CUJBAvbRny3HsbVASb-3kkBN_HUcLFULtybLe9954_Bj7hPAVAeRZQixRcsCKY0k1X96wDUpCDkT0lm0ACbKK6pi9T-keQGAp6B07FpJISqg37OGuszH4fu7azhbDekk27BduUurS5NqiN43ruY_OFWa_j8HY34UPsbBmtC4WyWZl7MbdeWHmKQxm9QwvQ-0yhT7sln-6PrAjb_rkPj6dJ-zX1eXPi2t---P7zcW3W263UkzcEJhWNKah0nvZVggeSNi6Vp7IlnWlmkoJQZVqVUuqLR1SLSEvWTfoFW1P2OkhN2_wZ3Zp0kOXrOt7M7owJ41KVHILSkJGv7xC78Mcx_y6TOWJIGupMoUHav2xFJ3X-9gNJi4aQa_t6EM7Orej13b0kj2fn5LnZnDtX8dzHRkQByBlady5-GL0f1MfAWMZnKA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Jagannadh, Veerendra Kalyan</creator><creator>Gopakumar, G.</creator><creator>Subrahmanyam, Gorthi R. K. Sai</creator><creator>Gorthi, Sai Siva</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20170501</creationdate><title>Microfluidic microscopy-assisted label-free approach for cancer screening: automated microfluidic cytology for cancer screening</title><author>Jagannadh, Veerendra Kalyan ; Gopakumar, G. ; Subrahmanyam, Gorthi R. K. Sai ; Gorthi, Sai Siva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a40ad2bab45ff7d610f042c998f44c5968b6822468d8d48d5e149704779b1f843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Cameras</topic><topic>Cancer</topic><topic>Cancer screening</topic><topic>Computer Applications</topic><topic>Computer vision</topic><topic>Cytology</topic><topic>Developing countries</topic><topic>Diagnostic systems</topic><topic>Early Detection of Cancer - methods</topic><topic>Health and safety screening</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Imaging</topic><topic>Instrumentation</topic><topic>LDCs</topic><topic>Mammography</topic><topic>Mass Screening - methods</topic><topic>Medical screening</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Mortality</topic><topic>Neoplasms - diagnosis</topic><topic>Original Article</topic><topic>Pattern recognition</topic><topic>Principal components analysis</topic><topic>Radiology</topic><topic>Surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagannadh, Veerendra Kalyan</creatorcontrib><creatorcontrib>Gopakumar, G.</creatorcontrib><creatorcontrib>Subrahmanyam, Gorthi R. K. Sai</creatorcontrib><creatorcontrib>Gorthi, Sai Siva</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagannadh, Veerendra Kalyan</au><au>Gopakumar, G.</au><au>Subrahmanyam, Gorthi R. K. Sai</au><au>Gorthi, Sai Siva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic microscopy-assisted label-free approach for cancer screening: automated microfluidic cytology for cancer screening</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>55</volume><issue>5</issue><spage>711</spage><epage>718</epage><pages>711-718</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Each year, about 7–8 million deaths occur due to cancer around the world. More than half of the cancer-related deaths occur in the less-developed parts of the world. Cancer mortality rate can be reduced with early detection and subsequent treatment of the disease. In this paper, we introduce a microfluidic microscopy-based cost-effective and label-free approach for identification of cancerous cells. We outline a diagnostic framework for the same and detail an instrumentation layout. We have employed classical computer vision techniques such as 2D principal component analysis-based cell type representation followed by support vector machine-based classification. Analogous to criminal face recognition systems implemented with help of surveillance cameras, a signature-based approach for cancerous cell identification using microfluidic microscopy surveillance is demonstrated. Such a platform would facilitate affordable mass screening camps in the developing countries and therefore help decrease cancer mortality rate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27447709</pmid><doi>10.1007/s11517-016-1549-y</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2017-05, Vol.55 (5), p.711-718
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_1826730870
source MEDLINE; Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Cameras
Cancer
Cancer screening
Computer Applications
Computer vision
Cytology
Developing countries
Diagnostic systems
Early Detection of Cancer - methods
Health and safety screening
Human Physiology
Humans
Imaging
Instrumentation
LDCs
Mammography
Mass Screening - methods
Medical screening
Microfluidics
Microfluidics - methods
Microscopy
Microscopy - methods
Mortality
Neoplasms - diagnosis
Original Article
Pattern recognition
Principal components analysis
Radiology
Surveillance
title Microfluidic microscopy-assisted label-free approach for cancer screening: automated microfluidic cytology for cancer screening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20microscopy-assisted%20label-free%20approach%20for%20cancer%20screening:%20automated%20microfluidic%20cytology%20for%20cancer%20screening&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Jagannadh,%20Veerendra%20Kalyan&rft.date=2017-05-01&rft.volume=55&rft.issue=5&rft.spage=711&rft.epage=718&rft.pages=711-718&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-016-1549-y&rft_dat=%3Cproquest_cross%3E1826730870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899807978&rft_id=info:pmid/27447709&rfr_iscdi=true