Poly(lactic acid) based hydrogels

Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced drug delivery reviews 2016-12, Vol.107, p.192-205
Hauptverfasser: Basu, Arijit, Kunduru, Konda Reddy, Doppalapudi, Sindhu, Domb, Abraham J., Khan, Wahid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue
container_start_page 192
container_title Advanced drug delivery reviews
container_volume 107
creator Basu, Arijit
Kunduru, Konda Reddy
Doppalapudi, Sindhu
Domb, Abraham J.
Khan, Wahid
description Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hydrophilic monomers or conjugated to a hydrophilic moiety to form hydrogels. Copolymers of lactic and glycolic acids with poly(ethylene glycol) (PEG) provide thermo-responsive hydrogels. Physical crosslinking mechanisms of PEG–PLA or PLA-polysaccharides include: lactic acid segment hydrophobic interactions, stereocomplexation of D and L-lactic acid segments, ionic interactions, and chemical bond formation by radical or photo crosslinking. These hydrogels may also be tailored as stimulus responsive (pH, photo, or redox). PLA and its copolymers have also been polymerized to include urethane bonds to fabricate shape memory hydrogels. This review focuses on the synthesis, characterization, and applications of PLA containing hydrogels. [Display omitted]
doi_str_mv 10.1016/j.addr.2016.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826722872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169409X16302241</els_id><sourcerecordid>1826722872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-9c11d817ce5e5167cde09ac699e17c478fc6b47c2f9677c9e5cfafca29d8fd203</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMotla_gAept3rYNUl3MxvwIsV_UNCDgreQTmY1ZdutyVbotzel1aOnGWbee_B-jJ0Lngsu1PU8t86FXKY955BzXhywvqhAZpXUxSHrp4fOCq7fe-wkxjnnQoLix6wnoRhL0NBnly9tsxk1FjuPQ4veXQ1nNpIbfm5caD-oiafsqLZNpLP9HLC3-7vXyWM2fX54mtxOMxyXqss0CuEqAUgllUIBOuLaotKa0rGAqkY1KwBlrRUAaiqxtjVaqV1VO8nHAzba5a5C-7Wm2JmFj0hNY5fUrqMRlVQgZaqXpHInxdDGGKg2q-AXNmyM4GaLxszNFo3ZojEcTEKTTBf7_PVsQe7P8ssiCW52glSavj0FE9HTEsn5QNgZ1_r_8n8A9BNzpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826722872</pqid></control><display><type>article</type><title>Poly(lactic acid) based hydrogels</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Basu, Arijit ; Kunduru, Konda Reddy ; Doppalapudi, Sindhu ; Domb, Abraham J. ; Khan, Wahid</creator><creatorcontrib>Basu, Arijit ; Kunduru, Konda Reddy ; Doppalapudi, Sindhu ; Domb, Abraham J. ; Khan, Wahid</creatorcontrib><description>Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hydrophilic monomers or conjugated to a hydrophilic moiety to form hydrogels. Copolymers of lactic and glycolic acids with poly(ethylene glycol) (PEG) provide thermo-responsive hydrogels. Physical crosslinking mechanisms of PEG–PLA or PLA-polysaccharides include: lactic acid segment hydrophobic interactions, stereocomplexation of D and L-lactic acid segments, ionic interactions, and chemical bond formation by radical or photo crosslinking. These hydrogels may also be tailored as stimulus responsive (pH, photo, or redox). PLA and its copolymers have also been polymerized to include urethane bonds to fabricate shape memory hydrogels. This review focuses on the synthesis, characterization, and applications of PLA containing hydrogels. [Display omitted]</description><identifier>ISSN: 0169-409X</identifier><identifier>EISSN: 1872-8294</identifier><identifier>DOI: 10.1016/j.addr.2016.07.004</identifier><identifier>PMID: 27432797</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Humans ; Hydrogel ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; Hydrogels - radiation effects ; In situ hydrogel ; Lactic Acid - chemistry ; PLA ; PLA–PEG ; Polyesters - chemistry ; Polyethylene Glycols - chemistry ; Responsive polymer ; Temperature ; Thermo-responsive</subject><ispartof>Advanced drug delivery reviews, 2016-12, Vol.107, p.192-205</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-9c11d817ce5e5167cde09ac699e17c478fc6b47c2f9677c9e5cfafca29d8fd203</citedby><cites>FETCH-LOGICAL-c356t-9c11d817ce5e5167cde09ac699e17c478fc6b47c2f9677c9e5cfafca29d8fd203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.addr.2016.07.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27432797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basu, Arijit</creatorcontrib><creatorcontrib>Kunduru, Konda Reddy</creatorcontrib><creatorcontrib>Doppalapudi, Sindhu</creatorcontrib><creatorcontrib>Domb, Abraham J.</creatorcontrib><creatorcontrib>Khan, Wahid</creatorcontrib><title>Poly(lactic acid) based hydrogels</title><title>Advanced drug delivery reviews</title><addtitle>Adv Drug Deliv Rev</addtitle><description>Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hydrophilic monomers or conjugated to a hydrophilic moiety to form hydrogels. Copolymers of lactic and glycolic acids with poly(ethylene glycol) (PEG) provide thermo-responsive hydrogels. Physical crosslinking mechanisms of PEG–PLA or PLA-polysaccharides include: lactic acid segment hydrophobic interactions, stereocomplexation of D and L-lactic acid segments, ionic interactions, and chemical bond formation by radical or photo crosslinking. These hydrogels may also be tailored as stimulus responsive (pH, photo, or redox). PLA and its copolymers have also been polymerized to include urethane bonds to fabricate shape memory hydrogels. This review focuses on the synthesis, characterization, and applications of PLA containing hydrogels. [Display omitted]</description><subject>Animals</subject><subject>Humans</subject><subject>Hydrogel</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - radiation effects</subject><subject>In situ hydrogel</subject><subject>Lactic Acid - chemistry</subject><subject>PLA</subject><subject>PLA–PEG</subject><subject>Polyesters - chemistry</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Responsive polymer</subject><subject>Temperature</subject><subject>Thermo-responsive</subject><issn>0169-409X</issn><issn>1872-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LAzEQxYMotla_gAept3rYNUl3MxvwIsV_UNCDgreQTmY1ZdutyVbotzel1aOnGWbee_B-jJ0Lngsu1PU8t86FXKY955BzXhywvqhAZpXUxSHrp4fOCq7fe-wkxjnnQoLix6wnoRhL0NBnly9tsxk1FjuPQ4veXQ1nNpIbfm5caD-oiafsqLZNpLP9HLC3-7vXyWM2fX54mtxOMxyXqss0CuEqAUgllUIBOuLaotKa0rGAqkY1KwBlrRUAaiqxtjVaqV1VO8nHAzba5a5C-7Wm2JmFj0hNY5fUrqMRlVQgZaqXpHInxdDGGKg2q-AXNmyM4GaLxszNFo3ZojEcTEKTTBf7_PVsQe7P8ssiCW52glSavj0FE9HTEsn5QNgZ1_r_8n8A9BNzpQ</recordid><startdate>20161215</startdate><enddate>20161215</enddate><creator>Basu, Arijit</creator><creator>Kunduru, Konda Reddy</creator><creator>Doppalapudi, Sindhu</creator><creator>Domb, Abraham J.</creator><creator>Khan, Wahid</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161215</creationdate><title>Poly(lactic acid) based hydrogels</title><author>Basu, Arijit ; Kunduru, Konda Reddy ; Doppalapudi, Sindhu ; Domb, Abraham J. ; Khan, Wahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-9c11d817ce5e5167cde09ac699e17c478fc6b47c2f9677c9e5cfafca29d8fd203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Humans</topic><topic>Hydrogel</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - radiation effects</topic><topic>In situ hydrogel</topic><topic>Lactic Acid - chemistry</topic><topic>PLA</topic><topic>PLA–PEG</topic><topic>Polyesters - chemistry</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Responsive polymer</topic><topic>Temperature</topic><topic>Thermo-responsive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basu, Arijit</creatorcontrib><creatorcontrib>Kunduru, Konda Reddy</creatorcontrib><creatorcontrib>Doppalapudi, Sindhu</creatorcontrib><creatorcontrib>Domb, Abraham J.</creatorcontrib><creatorcontrib>Khan, Wahid</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced drug delivery reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basu, Arijit</au><au>Kunduru, Konda Reddy</au><au>Doppalapudi, Sindhu</au><au>Domb, Abraham J.</au><au>Khan, Wahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(lactic acid) based hydrogels</atitle><jtitle>Advanced drug delivery reviews</jtitle><addtitle>Adv Drug Deliv Rev</addtitle><date>2016-12-15</date><risdate>2016</risdate><volume>107</volume><spage>192</spage><epage>205</epage><pages>192-205</pages><issn>0169-409X</issn><eissn>1872-8294</eissn><abstract>Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hydrophilic monomers or conjugated to a hydrophilic moiety to form hydrogels. Copolymers of lactic and glycolic acids with poly(ethylene glycol) (PEG) provide thermo-responsive hydrogels. Physical crosslinking mechanisms of PEG–PLA or PLA-polysaccharides include: lactic acid segment hydrophobic interactions, stereocomplexation of D and L-lactic acid segments, ionic interactions, and chemical bond formation by radical or photo crosslinking. These hydrogels may also be tailored as stimulus responsive (pH, photo, or redox). PLA and its copolymers have also been polymerized to include urethane bonds to fabricate shape memory hydrogels. This review focuses on the synthesis, characterization, and applications of PLA containing hydrogels. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27432797</pmid><doi>10.1016/j.addr.2016.07.004</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-409X
ispartof Advanced drug delivery reviews, 2016-12, Vol.107, p.192-205
issn 0169-409X
1872-8294
language eng
recordid cdi_proquest_miscellaneous_1826722872
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Animals
Humans
Hydrogel
Hydrogels - chemical synthesis
Hydrogels - chemistry
Hydrogels - radiation effects
In situ hydrogel
Lactic Acid - chemistry
PLA
PLA–PEG
Polyesters - chemistry
Polyethylene Glycols - chemistry
Responsive polymer
Temperature
Thermo-responsive
title Poly(lactic acid) based hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(lactic%20acid)%20based%20hydrogels&rft.jtitle=Advanced%20drug%20delivery%20reviews&rft.au=Basu,%20Arijit&rft.date=2016-12-15&rft.volume=107&rft.spage=192&rft.epage=205&rft.pages=192-205&rft.issn=0169-409X&rft.eissn=1872-8294&rft_id=info:doi/10.1016/j.addr.2016.07.004&rft_dat=%3Cproquest_cross%3E1826722872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826722872&rft_id=info:pmid/27432797&rft_els_id=S0169409X16302241&rfr_iscdi=true