Poly(lactic acid) based hydrogels
Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hy...
Gespeichert in:
Veröffentlicht in: | Advanced drug delivery reviews 2016-12, Vol.107, p.192-205 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | |
container_start_page | 192 |
container_title | Advanced drug delivery reviews |
container_volume | 107 |
creator | Basu, Arijit Kunduru, Konda Reddy Doppalapudi, Sindhu Domb, Abraham J. Khan, Wahid |
description | Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hydrophilic monomers or conjugated to a hydrophilic moiety to form hydrogels. Copolymers of lactic and glycolic acids with poly(ethylene glycol) (PEG) provide thermo-responsive hydrogels. Physical crosslinking mechanisms of PEG–PLA or PLA-polysaccharides include: lactic acid segment hydrophobic interactions, stereocomplexation of D and L-lactic acid segments, ionic interactions, and chemical bond formation by radical or photo crosslinking. These hydrogels may also be tailored as stimulus responsive (pH, photo, or redox). PLA and its copolymers have also been polymerized to include urethane bonds to fabricate shape memory hydrogels. This review focuses on the synthesis, characterization, and applications of PLA containing hydrogels.
[Display omitted] |
doi_str_mv | 10.1016/j.addr.2016.07.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826722872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169409X16302241</els_id><sourcerecordid>1826722872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-9c11d817ce5e5167cde09ac699e17c478fc6b47c2f9677c9e5cfafca29d8fd203</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMotla_gAept3rYNUl3MxvwIsV_UNCDgreQTmY1ZdutyVbotzel1aOnGWbee_B-jJ0Lngsu1PU8t86FXKY955BzXhywvqhAZpXUxSHrp4fOCq7fe-wkxjnnQoLix6wnoRhL0NBnly9tsxk1FjuPQ4veXQ1nNpIbfm5caD-oiafsqLZNpLP9HLC3-7vXyWM2fX54mtxOMxyXqss0CuEqAUgllUIBOuLaotKa0rGAqkY1KwBlrRUAaiqxtjVaqV1VO8nHAzba5a5C-7Wm2JmFj0hNY5fUrqMRlVQgZaqXpHInxdDGGKg2q-AXNmyM4GaLxszNFo3ZojEcTEKTTBf7_PVsQe7P8ssiCW52glSavj0FE9HTEsn5QNgZ1_r_8n8A9BNzpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826722872</pqid></control><display><type>article</type><title>Poly(lactic acid) based hydrogels</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Basu, Arijit ; Kunduru, Konda Reddy ; Doppalapudi, Sindhu ; Domb, Abraham J. ; Khan, Wahid</creator><creatorcontrib>Basu, Arijit ; Kunduru, Konda Reddy ; Doppalapudi, Sindhu ; Domb, Abraham J. ; Khan, Wahid</creatorcontrib><description>Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hydrophilic monomers or conjugated to a hydrophilic moiety to form hydrogels. Copolymers of lactic and glycolic acids with poly(ethylene glycol) (PEG) provide thermo-responsive hydrogels. Physical crosslinking mechanisms of PEG–PLA or PLA-polysaccharides include: lactic acid segment hydrophobic interactions, stereocomplexation of D and L-lactic acid segments, ionic interactions, and chemical bond formation by radical or photo crosslinking. These hydrogels may also be tailored as stimulus responsive (pH, photo, or redox). PLA and its copolymers have also been polymerized to include urethane bonds to fabricate shape memory hydrogels. This review focuses on the synthesis, characterization, and applications of PLA containing hydrogels.
[Display omitted]</description><identifier>ISSN: 0169-409X</identifier><identifier>EISSN: 1872-8294</identifier><identifier>DOI: 10.1016/j.addr.2016.07.004</identifier><identifier>PMID: 27432797</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Humans ; Hydrogel ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; Hydrogels - radiation effects ; In situ hydrogel ; Lactic Acid - chemistry ; PLA ; PLA–PEG ; Polyesters - chemistry ; Polyethylene Glycols - chemistry ; Responsive polymer ; Temperature ; Thermo-responsive</subject><ispartof>Advanced drug delivery reviews, 2016-12, Vol.107, p.192-205</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-9c11d817ce5e5167cde09ac699e17c478fc6b47c2f9677c9e5cfafca29d8fd203</citedby><cites>FETCH-LOGICAL-c356t-9c11d817ce5e5167cde09ac699e17c478fc6b47c2f9677c9e5cfafca29d8fd203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.addr.2016.07.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27432797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basu, Arijit</creatorcontrib><creatorcontrib>Kunduru, Konda Reddy</creatorcontrib><creatorcontrib>Doppalapudi, Sindhu</creatorcontrib><creatorcontrib>Domb, Abraham J.</creatorcontrib><creatorcontrib>Khan, Wahid</creatorcontrib><title>Poly(lactic acid) based hydrogels</title><title>Advanced drug delivery reviews</title><addtitle>Adv Drug Deliv Rev</addtitle><description>Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hydrophilic monomers or conjugated to a hydrophilic moiety to form hydrogels. Copolymers of lactic and glycolic acids with poly(ethylene glycol) (PEG) provide thermo-responsive hydrogels. Physical crosslinking mechanisms of PEG–PLA or PLA-polysaccharides include: lactic acid segment hydrophobic interactions, stereocomplexation of D and L-lactic acid segments, ionic interactions, and chemical bond formation by radical or photo crosslinking. These hydrogels may also be tailored as stimulus responsive (pH, photo, or redox). PLA and its copolymers have also been polymerized to include urethane bonds to fabricate shape memory hydrogels. This review focuses on the synthesis, characterization, and applications of PLA containing hydrogels.
[Display omitted]</description><subject>Animals</subject><subject>Humans</subject><subject>Hydrogel</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - radiation effects</subject><subject>In situ hydrogel</subject><subject>Lactic Acid - chemistry</subject><subject>PLA</subject><subject>PLA–PEG</subject><subject>Polyesters - chemistry</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Responsive polymer</subject><subject>Temperature</subject><subject>Thermo-responsive</subject><issn>0169-409X</issn><issn>1872-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LAzEQxYMotla_gAept3rYNUl3MxvwIsV_UNCDgreQTmY1ZdutyVbotzel1aOnGWbee_B-jJ0Lngsu1PU8t86FXKY955BzXhywvqhAZpXUxSHrp4fOCq7fe-wkxjnnQoLix6wnoRhL0NBnly9tsxk1FjuPQ4veXQ1nNpIbfm5caD-oiafsqLZNpLP9HLC3-7vXyWM2fX54mtxOMxyXqss0CuEqAUgllUIBOuLaotKa0rGAqkY1KwBlrRUAaiqxtjVaqV1VO8nHAzba5a5C-7Wm2JmFj0hNY5fUrqMRlVQgZaqXpHInxdDGGKg2q-AXNmyM4GaLxszNFo3ZojEcTEKTTBf7_PVsQe7P8ssiCW52glSavj0FE9HTEsn5QNgZ1_r_8n8A9BNzpQ</recordid><startdate>20161215</startdate><enddate>20161215</enddate><creator>Basu, Arijit</creator><creator>Kunduru, Konda Reddy</creator><creator>Doppalapudi, Sindhu</creator><creator>Domb, Abraham J.</creator><creator>Khan, Wahid</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161215</creationdate><title>Poly(lactic acid) based hydrogels</title><author>Basu, Arijit ; Kunduru, Konda Reddy ; Doppalapudi, Sindhu ; Domb, Abraham J. ; Khan, Wahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-9c11d817ce5e5167cde09ac699e17c478fc6b47c2f9677c9e5cfafca29d8fd203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Humans</topic><topic>Hydrogel</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - radiation effects</topic><topic>In situ hydrogel</topic><topic>Lactic Acid - chemistry</topic><topic>PLA</topic><topic>PLA–PEG</topic><topic>Polyesters - chemistry</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Responsive polymer</topic><topic>Temperature</topic><topic>Thermo-responsive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basu, Arijit</creatorcontrib><creatorcontrib>Kunduru, Konda Reddy</creatorcontrib><creatorcontrib>Doppalapudi, Sindhu</creatorcontrib><creatorcontrib>Domb, Abraham J.</creatorcontrib><creatorcontrib>Khan, Wahid</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced drug delivery reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basu, Arijit</au><au>Kunduru, Konda Reddy</au><au>Doppalapudi, Sindhu</au><au>Domb, Abraham J.</au><au>Khan, Wahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(lactic acid) based hydrogels</atitle><jtitle>Advanced drug delivery reviews</jtitle><addtitle>Adv Drug Deliv Rev</addtitle><date>2016-12-15</date><risdate>2016</risdate><volume>107</volume><spage>192</spage><epage>205</epage><pages>192-205</pages><issn>0169-409X</issn><eissn>1872-8294</eissn><abstract>Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hydrophilic monomers or conjugated to a hydrophilic moiety to form hydrogels. Copolymers of lactic and glycolic acids with poly(ethylene glycol) (PEG) provide thermo-responsive hydrogels. Physical crosslinking mechanisms of PEG–PLA or PLA-polysaccharides include: lactic acid segment hydrophobic interactions, stereocomplexation of D and L-lactic acid segments, ionic interactions, and chemical bond formation by radical or photo crosslinking. These hydrogels may also be tailored as stimulus responsive (pH, photo, or redox). PLA and its copolymers have also been polymerized to include urethane bonds to fabricate shape memory hydrogels. This review focuses on the synthesis, characterization, and applications of PLA containing hydrogels.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27432797</pmid><doi>10.1016/j.addr.2016.07.004</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-409X |
ispartof | Advanced drug delivery reviews, 2016-12, Vol.107, p.192-205 |
issn | 0169-409X 1872-8294 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826722872 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Animals Humans Hydrogel Hydrogels - chemical synthesis Hydrogels - chemistry Hydrogels - radiation effects In situ hydrogel Lactic Acid - chemistry PLA PLA–PEG Polyesters - chemistry Polyethylene Glycols - chemistry Responsive polymer Temperature Thermo-responsive |
title | Poly(lactic acid) based hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(lactic%20acid)%20based%20hydrogels&rft.jtitle=Advanced%20drug%20delivery%20reviews&rft.au=Basu,%20Arijit&rft.date=2016-12-15&rft.volume=107&rft.spage=192&rft.epage=205&rft.pages=192-205&rft.issn=0169-409X&rft.eissn=1872-8294&rft_id=info:doi/10.1016/j.addr.2016.07.004&rft_dat=%3Cproquest_cross%3E1826722872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826722872&rft_id=info:pmid/27432797&rft_els_id=S0169409X16302241&rfr_iscdi=true |