Super‐resolution T1 estimation: Quantitative high resolution T1 mapping from a set of low resolution T1‐weighted images with different slice orientations
Purpose Quantitative T1 mapping is a magnetic resonance imaging technique that estimates the spin‐lattice relaxation time of tissues. Even though T1 mapping has a broad range of potential applications, it is not routinely used in clinical practice as accurate and precise high resolution T1 mapping r...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2017-05, Vol.77 (5), p.1818-1830 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1830 |
---|---|
container_issue | 5 |
container_start_page | 1818 |
container_title | Magnetic resonance in medicine |
container_volume | 77 |
creator | Van Steenkiste, Gwendolyn Poot, Dirk H. J. Jeurissen, Ben den Dekker, Arnold J. Vanhevel, Floris Parizel, Paul M. Sijbers, Jan |
description | Purpose
Quantitative T1 mapping is a magnetic resonance imaging technique that estimates the spin‐lattice relaxation time of tissues. Even though T1 mapping has a broad range of potential applications, it is not routinely used in clinical practice as accurate and precise high resolution T1 mapping requires infeasibly long acquisition times.
Method
To improve the trade‐off between the acquisition time, signal‐to‐noise ratio and spatial resolution, we acquire a set of low resolution T1‐weighted images and directly estimate a high resolution T1 map by means of super‐resolution reconstruction.
Results
Simulation and in vivo experiments show an increased spatial resolution of the T1 map, while preserving a high signal‐to‐noise ratio and short scan time. Moreover, the proposed method outperforms conventional estimation in terms of root‐mean‐square error.
Conclusion
Super resolution T1 estimation enables resolution enhancement in T1 mapping with the use of standard (inversion recovery) T1 acquisition sequences. Magn Reson Med 77:1818–1830, 2017. © 2016 International Society for Magnetic Resonance in Medicine |
doi_str_mv | 10.1002/mrm.26262 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826709692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826709692</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2342-39ea5c626fec862429f369eff45164feca12b176cf1292e9296549696a604dbe3</originalsourceid><addsrcrecordid>eNp9kc1O9SAQhonRxOPPwjsgcfNtqjCltLgzxr9EY_xbE-wZzsG0pR-0nrjzErwBb84rEY9udCEsmJc8M8PwErLD2R5nDPbb0O6BTHuFTHgBkEGhxCqZsFKwLOdKrJONGB8ZY0qVYkLebscew_vLa8Dom3FwvqN3nGIcXGs-1QG9Hk03uCGpJ6RzN5vTn2xr-t51M2qDb6mhEQfqLW384ieXeiwwZQ84pan2DCNduGFOp85aDNgNNDauRuqDS2LZO26RNWuaiNvf5ya5Pzm-OzrLLq5Oz48OL7IecgFZrtAUdZraYl1JEKBsLhVaKwouRbo0HB54KWvLQQEqULIQSippJBPTB8w3yb-vun3w_8c0vG5drLFpTId-jJpXIEuWMiChu7_QRz-GLr1OAwMu86rIq78oXqVVqgJYova_qIVr8Fn3If1LeNac6U8vdfJSL73UlzeXyyD_AOiGlzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888879520</pqid></control><display><type>article</type><title>Super‐resolution T1 estimation: Quantitative high resolution T1 mapping from a set of low resolution T1‐weighted images with different slice orientations</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Van Steenkiste, Gwendolyn ; Poot, Dirk H. J. ; Jeurissen, Ben ; den Dekker, Arnold J. ; Vanhevel, Floris ; Parizel, Paul M. ; Sijbers, Jan</creator><creatorcontrib>Van Steenkiste, Gwendolyn ; Poot, Dirk H. J. ; Jeurissen, Ben ; den Dekker, Arnold J. ; Vanhevel, Floris ; Parizel, Paul M. ; Sijbers, Jan</creatorcontrib><description>Purpose
Quantitative T1 mapping is a magnetic resonance imaging technique that estimates the spin‐lattice relaxation time of tissues. Even though T1 mapping has a broad range of potential applications, it is not routinely used in clinical practice as accurate and precise high resolution T1 mapping requires infeasibly long acquisition times.
Method
To improve the trade‐off between the acquisition time, signal‐to‐noise ratio and spatial resolution, we acquire a set of low resolution T1‐weighted images and directly estimate a high resolution T1 map by means of super‐resolution reconstruction.
Results
Simulation and in vivo experiments show an increased spatial resolution of the T1 map, while preserving a high signal‐to‐noise ratio and short scan time. Moreover, the proposed method outperforms conventional estimation in terms of root‐mean‐square error.
Conclusion
Super resolution T1 estimation enables resolution enhancement in T1 mapping with the use of standard (inversion recovery) T1 acquisition sequences. Magn Reson Med 77:1818–1830, 2017. © 2016 International Society for Magnetic Resonance in Medicine</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.26262</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>High resolution ; Image acquisition ; Image resolution ; Magnetic resonance imaging ; Mapping ; Noise ; reconstruction ; Relaxation time ; relaxometry ; Resonance ; Spatial discrimination ; Spatial resolution ; super‐resolution ; T1 mapping</subject><ispartof>Magnetic resonance in medicine, 2017-05, Vol.77 (5), p.1818-1830</ispartof><rights>2016 International Society for Magnetic Resonance in Medicine</rights><rights>2017 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.26262$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.26262$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Van Steenkiste, Gwendolyn</creatorcontrib><creatorcontrib>Poot, Dirk H. J.</creatorcontrib><creatorcontrib>Jeurissen, Ben</creatorcontrib><creatorcontrib>den Dekker, Arnold J.</creatorcontrib><creatorcontrib>Vanhevel, Floris</creatorcontrib><creatorcontrib>Parizel, Paul M.</creatorcontrib><creatorcontrib>Sijbers, Jan</creatorcontrib><title>Super‐resolution T1 estimation: Quantitative high resolution T1 mapping from a set of low resolution T1‐weighted images with different slice orientations</title><title>Magnetic resonance in medicine</title><description>Purpose
Quantitative T1 mapping is a magnetic resonance imaging technique that estimates the spin‐lattice relaxation time of tissues. Even though T1 mapping has a broad range of potential applications, it is not routinely used in clinical practice as accurate and precise high resolution T1 mapping requires infeasibly long acquisition times.
Method
To improve the trade‐off between the acquisition time, signal‐to‐noise ratio and spatial resolution, we acquire a set of low resolution T1‐weighted images and directly estimate a high resolution T1 map by means of super‐resolution reconstruction.
Results
Simulation and in vivo experiments show an increased spatial resolution of the T1 map, while preserving a high signal‐to‐noise ratio and short scan time. Moreover, the proposed method outperforms conventional estimation in terms of root‐mean‐square error.
Conclusion
Super resolution T1 estimation enables resolution enhancement in T1 mapping with the use of standard (inversion recovery) T1 acquisition sequences. Magn Reson Med 77:1818–1830, 2017. © 2016 International Society for Magnetic Resonance in Medicine</description><subject>High resolution</subject><subject>Image acquisition</subject><subject>Image resolution</subject><subject>Magnetic resonance imaging</subject><subject>Mapping</subject><subject>Noise</subject><subject>reconstruction</subject><subject>Relaxation time</subject><subject>relaxometry</subject><subject>Resonance</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>super‐resolution</subject><subject>T1 mapping</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O9SAQhonRxOPPwjsgcfNtqjCltLgzxr9EY_xbE-wZzsG0pR-0nrjzErwBb84rEY9udCEsmJc8M8PwErLD2R5nDPbb0O6BTHuFTHgBkEGhxCqZsFKwLOdKrJONGB8ZY0qVYkLebscew_vLa8Dom3FwvqN3nGIcXGs-1QG9Hk03uCGpJ6RzN5vTn2xr-t51M2qDb6mhEQfqLW384ieXeiwwZQ84pan2DCNduGFOp85aDNgNNDauRuqDS2LZO26RNWuaiNvf5ya5Pzm-OzrLLq5Oz48OL7IecgFZrtAUdZraYl1JEKBsLhVaKwouRbo0HB54KWvLQQEqULIQSippJBPTB8w3yb-vun3w_8c0vG5drLFpTId-jJpXIEuWMiChu7_QRz-GLr1OAwMu86rIq78oXqVVqgJYova_qIVr8Fn3If1LeNac6U8vdfJSL73UlzeXyyD_AOiGlzc</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Van Steenkiste, Gwendolyn</creator><creator>Poot, Dirk H. J.</creator><creator>Jeurissen, Ben</creator><creator>den Dekker, Arnold J.</creator><creator>Vanhevel, Floris</creator><creator>Parizel, Paul M.</creator><creator>Sijbers, Jan</creator><general>Wiley Subscription Services, Inc</general><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201705</creationdate><title>Super‐resolution T1 estimation: Quantitative high resolution T1 mapping from a set of low resolution T1‐weighted images with different slice orientations</title><author>Van Steenkiste, Gwendolyn ; Poot, Dirk H. J. ; Jeurissen, Ben ; den Dekker, Arnold J. ; Vanhevel, Floris ; Parizel, Paul M. ; Sijbers, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2342-39ea5c626fec862429f369eff45164feca12b176cf1292e9296549696a604dbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>High resolution</topic><topic>Image acquisition</topic><topic>Image resolution</topic><topic>Magnetic resonance imaging</topic><topic>Mapping</topic><topic>Noise</topic><topic>reconstruction</topic><topic>Relaxation time</topic><topic>relaxometry</topic><topic>Resonance</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>super‐resolution</topic><topic>T1 mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Steenkiste, Gwendolyn</creatorcontrib><creatorcontrib>Poot, Dirk H. J.</creatorcontrib><creatorcontrib>Jeurissen, Ben</creatorcontrib><creatorcontrib>den Dekker, Arnold J.</creatorcontrib><creatorcontrib>Vanhevel, Floris</creatorcontrib><creatorcontrib>Parizel, Paul M.</creatorcontrib><creatorcontrib>Sijbers, Jan</creatorcontrib><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Steenkiste, Gwendolyn</au><au>Poot, Dirk H. J.</au><au>Jeurissen, Ben</au><au>den Dekker, Arnold J.</au><au>Vanhevel, Floris</au><au>Parizel, Paul M.</au><au>Sijbers, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super‐resolution T1 estimation: Quantitative high resolution T1 mapping from a set of low resolution T1‐weighted images with different slice orientations</atitle><jtitle>Magnetic resonance in medicine</jtitle><date>2017-05</date><risdate>2017</risdate><volume>77</volume><issue>5</issue><spage>1818</spage><epage>1830</epage><pages>1818-1830</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose
Quantitative T1 mapping is a magnetic resonance imaging technique that estimates the spin‐lattice relaxation time of tissues. Even though T1 mapping has a broad range of potential applications, it is not routinely used in clinical practice as accurate and precise high resolution T1 mapping requires infeasibly long acquisition times.
Method
To improve the trade‐off between the acquisition time, signal‐to‐noise ratio and spatial resolution, we acquire a set of low resolution T1‐weighted images and directly estimate a high resolution T1 map by means of super‐resolution reconstruction.
Results
Simulation and in vivo experiments show an increased spatial resolution of the T1 map, while preserving a high signal‐to‐noise ratio and short scan time. Moreover, the proposed method outperforms conventional estimation in terms of root‐mean‐square error.
Conclusion
Super resolution T1 estimation enables resolution enhancement in T1 mapping with the use of standard (inversion recovery) T1 acquisition sequences. Magn Reson Med 77:1818–1830, 2017. © 2016 International Society for Magnetic Resonance in Medicine</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mrm.26262</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2017-05, Vol.77 (5), p.1818-1830 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826709692 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete |
subjects | High resolution Image acquisition Image resolution Magnetic resonance imaging Mapping Noise reconstruction Relaxation time relaxometry Resonance Spatial discrimination Spatial resolution super‐resolution T1 mapping |
title | Super‐resolution T1 estimation: Quantitative high resolution T1 mapping from a set of low resolution T1‐weighted images with different slice orientations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%E2%80%90resolution%20T1%20estimation:%20Quantitative%20high%20resolution%20T1%20mapping%20from%20a%20set%20of%20low%20resolution%20T1%E2%80%90weighted%20images%20with%20different%20slice%20orientations&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Van%20Steenkiste,%20Gwendolyn&rft.date=2017-05&rft.volume=77&rft.issue=5&rft.spage=1818&rft.epage=1830&rft.pages=1818-1830&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.26262&rft_dat=%3Cproquest_wiley%3E1826709692%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888879520&rft_id=info:pmid/&rfr_iscdi=true |