Neuro-fuzzy models for hand movements induced by functional electrical stimulation in able-bodied and hemiplegic subjects
Highlights • An upper-limb FES model based on recurrent fuzzy neural networks is proposed. • Model predicts wrist and finger kinematics from electrode location and amplitude. • Data collected from healthy subjects and brain injured hemiplegic patients were used. • Prediction success rates between 78...
Gespeichert in:
Veröffentlicht in: | Medical engineering & physics 2016-11, Vol.38 (11), p.1214-1222 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1222 |
---|---|
container_issue | 11 |
container_start_page | 1214 |
container_title | Medical engineering & physics |
container_volume | 38 |
creator | Imatz-Ojanguren, Eukene Irigoyen, Eloy Valencia-Blanco, David Keller, Thierry |
description | Highlights • An upper-limb FES model based on recurrent fuzzy neural networks is proposed. • Model predicts wrist and finger kinematics from electrode location and amplitude. • Data collected from healthy subjects and brain injured hemiplegic patients were used. • Prediction success rates between 78% and 100% were achieved by all subjects. |
doi_str_mv | 10.1016/j.medengphy.2016.06.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826709192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350453316301229</els_id><sourcerecordid>1826709192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-92064f731f7eecbd56806c45c973a53c19de1f855c94b4fa97cbd1bede5283b3</originalsourceid><addsrcrecordid>eNqNkctu1TAQhq0KRC_wCsVLNjnYsXPbIFUVbZEqWNC9ldiTHgfHPthxpfTpmeiULlghjeTx-P9n5G8I-cjZjjNef552Mxjwj4f9uiuxsGMYrD0hZ7xtRCGZYG8wFxUrZCXEKTlPaWKMSVmLd-S0bISsZcfPyPodcgzFmJ-fVzoHAy7RMUS6773B-xPM4JdErTdZg6HDSsfs9WKD7x0FB3qJVmOaFjtn128PKKb94KAYgrHo2TrtYbYHB49W05SHCW3pPXk79i7Bh5fzgjzcfH24vivuf9x-u766L7RsqqXoSlbLsRF8bAD0YKq6ZbWWle4a0VdC884AH9sKC3KQY981KOID0qnKVgzignw6tj3E8DtDWtRskwbneg8hJ8Xbsm5Yx7sSpc1RqmNIKcKoDtHOfVwVZ2rDrib1il1t2BXDYC06L1-G5AEVr76_nFFwdRQgX3iyEFXSFjwitRFhKBPsfwz58k8P7azf6P-CFdIUcsSl4I9UKhVTP7ftb8vntWC8LDvxBzcvsAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826709192</pqid></control><display><type>article</type><title>Neuro-fuzzy models for hand movements induced by functional electrical stimulation in able-bodied and hemiplegic subjects</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Imatz-Ojanguren, Eukene ; Irigoyen, Eloy ; Valencia-Blanco, David ; Keller, Thierry</creator><creatorcontrib>Imatz-Ojanguren, Eukene ; Irigoyen, Eloy ; Valencia-Blanco, David ; Keller, Thierry</creatorcontrib><description>Highlights • An upper-limb FES model based on recurrent fuzzy neural networks is proposed. • Model predicts wrist and finger kinematics from electrode location and amplitude. • Data collected from healthy subjects and brain injured hemiplegic patients were used. • Prediction success rates between 78% and 100% were achieved by all subjects.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2016.06.008</identifier><identifier>PMID: 27346491</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult ; Aged ; Biomechanical Phenomena ; Case-Control Studies ; Electric Stimulation Therapy ; Female ; Functional electrical stimulation ; Fuzzy Logic ; Fuzzy neural networks ; Hand ; Hand - physiopathology ; Hemiplegia - physiopathology ; Hemiplegia - therapy ; Humans ; Male ; Middle Aged ; Modeling ; Movement ; Multi-field electrodes ; Neural Networks (Computer) ; Neuroprosthesis ; Radiology</subject><ispartof>Medical engineering & physics, 2016-11, Vol.38 (11), p.1214-1222</ispartof><rights>IPEM</rights><rights>2016 IPEM</rights><rights>Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-92064f731f7eecbd56806c45c973a53c19de1f855c94b4fa97cbd1bede5283b3</citedby><cites>FETCH-LOGICAL-c475t-92064f731f7eecbd56806c45c973a53c19de1f855c94b4fa97cbd1bede5283b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1350453316301229$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27346491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imatz-Ojanguren, Eukene</creatorcontrib><creatorcontrib>Irigoyen, Eloy</creatorcontrib><creatorcontrib>Valencia-Blanco, David</creatorcontrib><creatorcontrib>Keller, Thierry</creatorcontrib><title>Neuro-fuzzy models for hand movements induced by functional electrical stimulation in able-bodied and hemiplegic subjects</title><title>Medical engineering & physics</title><addtitle>Med Eng Phys</addtitle><description>Highlights • An upper-limb FES model based on recurrent fuzzy neural networks is proposed. • Model predicts wrist and finger kinematics from electrode location and amplitude. • Data collected from healthy subjects and brain injured hemiplegic patients were used. • Prediction success rates between 78% and 100% were achieved by all subjects.</description><subject>Adult</subject><subject>Aged</subject><subject>Biomechanical Phenomena</subject><subject>Case-Control Studies</subject><subject>Electric Stimulation Therapy</subject><subject>Female</subject><subject>Functional electrical stimulation</subject><subject>Fuzzy Logic</subject><subject>Fuzzy neural networks</subject><subject>Hand</subject><subject>Hand - physiopathology</subject><subject>Hemiplegia - physiopathology</subject><subject>Hemiplegia - therapy</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Modeling</subject><subject>Movement</subject><subject>Multi-field electrodes</subject><subject>Neural Networks (Computer)</subject><subject>Neuroprosthesis</subject><subject>Radiology</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1TAQhq0KRC_wCsVLNjnYsXPbIFUVbZEqWNC9ldiTHgfHPthxpfTpmeiULlghjeTx-P9n5G8I-cjZjjNef552Mxjwj4f9uiuxsGMYrD0hZ7xtRCGZYG8wFxUrZCXEKTlPaWKMSVmLd-S0bISsZcfPyPodcgzFmJ-fVzoHAy7RMUS6773B-xPM4JdErTdZg6HDSsfs9WKD7x0FB3qJVmOaFjtn128PKKb94KAYgrHo2TrtYbYHB49W05SHCW3pPXk79i7Bh5fzgjzcfH24vivuf9x-u766L7RsqqXoSlbLsRF8bAD0YKq6ZbWWle4a0VdC884AH9sKC3KQY981KOID0qnKVgzignw6tj3E8DtDWtRskwbneg8hJ8Xbsm5Yx7sSpc1RqmNIKcKoDtHOfVwVZ2rDrib1il1t2BXDYC06L1-G5AEVr76_nFFwdRQgX3iyEFXSFjwitRFhKBPsfwz58k8P7azf6P-CFdIUcsSl4I9UKhVTP7ftb8vntWC8LDvxBzcvsAI</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Imatz-Ojanguren, Eukene</creator><creator>Irigoyen, Eloy</creator><creator>Valencia-Blanco, David</creator><creator>Keller, Thierry</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161101</creationdate><title>Neuro-fuzzy models for hand movements induced by functional electrical stimulation in able-bodied and hemiplegic subjects</title><author>Imatz-Ojanguren, Eukene ; Irigoyen, Eloy ; Valencia-Blanco, David ; Keller, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-92064f731f7eecbd56806c45c973a53c19de1f855c94b4fa97cbd1bede5283b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Biomechanical Phenomena</topic><topic>Case-Control Studies</topic><topic>Electric Stimulation Therapy</topic><topic>Female</topic><topic>Functional electrical stimulation</topic><topic>Fuzzy Logic</topic><topic>Fuzzy neural networks</topic><topic>Hand</topic><topic>Hand - physiopathology</topic><topic>Hemiplegia - physiopathology</topic><topic>Hemiplegia - therapy</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Modeling</topic><topic>Movement</topic><topic>Multi-field electrodes</topic><topic>Neural Networks (Computer)</topic><topic>Neuroprosthesis</topic><topic>Radiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imatz-Ojanguren, Eukene</creatorcontrib><creatorcontrib>Irigoyen, Eloy</creatorcontrib><creatorcontrib>Valencia-Blanco, David</creatorcontrib><creatorcontrib>Keller, Thierry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering & physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imatz-Ojanguren, Eukene</au><au>Irigoyen, Eloy</au><au>Valencia-Blanco, David</au><au>Keller, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuro-fuzzy models for hand movements induced by functional electrical stimulation in able-bodied and hemiplegic subjects</atitle><jtitle>Medical engineering & physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>38</volume><issue>11</issue><spage>1214</spage><epage>1222</epage><pages>1214-1222</pages><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Highlights • An upper-limb FES model based on recurrent fuzzy neural networks is proposed. • Model predicts wrist and finger kinematics from electrode location and amplitude. • Data collected from healthy subjects and brain injured hemiplegic patients were used. • Prediction success rates between 78% and 100% were achieved by all subjects.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27346491</pmid><doi>10.1016/j.medengphy.2016.06.008</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-4533 |
ispartof | Medical engineering & physics, 2016-11, Vol.38 (11), p.1214-1222 |
issn | 1350-4533 1873-4030 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826709192 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adult Aged Biomechanical Phenomena Case-Control Studies Electric Stimulation Therapy Female Functional electrical stimulation Fuzzy Logic Fuzzy neural networks Hand Hand - physiopathology Hemiplegia - physiopathology Hemiplegia - therapy Humans Male Middle Aged Modeling Movement Multi-field electrodes Neural Networks (Computer) Neuroprosthesis Radiology |
title | Neuro-fuzzy models for hand movements induced by functional electrical stimulation in able-bodied and hemiplegic subjects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuro-fuzzy%20models%20for%20hand%20movements%20induced%20by%20functional%20electrical%20stimulation%20in%20able-bodied%20and%20hemiplegic%20subjects&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Imatz-Ojanguren,%20Eukene&rft.date=2016-11-01&rft.volume=38&rft.issue=11&rft.spage=1214&rft.epage=1222&rft.pages=1214-1222&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2016.06.008&rft_dat=%3Cproquest_cross%3E1826709192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826709192&rft_id=info:pmid/27346491&rft_els_id=S1350453316301229&rfr_iscdi=true |