Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition?

Receptors generated by natural evolution in living organisms show an astonishing capacity for specifically recognizing target molecules. If applied as recognition units of biosensors, these receptors provide very high selectivity. However, they suffer from instability under measurement conditions, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biotechnology (Regular ed.) 2016-11, Vol.34 (11), p.922-941
Hauptverfasser: Cieplak, Maciej, Kutner, Włodzimierz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 941
container_issue 11
container_start_page 922
container_title Trends in biotechnology (Regular ed.)
container_volume 34
creator Cieplak, Maciej
Kutner, Włodzimierz
description Receptors generated by natural evolution in living organisms show an astonishing capacity for specifically recognizing target molecules. If applied as recognition units of biosensors, these receptors provide very high selectivity. However, they suffer from instability under measurement conditions, and low durability. Devising alternative robust artificial receptors circumvents these deficiencies. For instance, an antibody can be successfully replaced by a corresponding molecularly imprinted polymer (MIP), sometimes called a ‘plastic antibody’. Therefore, MIPs used as recognition units in chemical sensors are gaining increasing interest. In this review, we survey selected examples of MIPs used for determining target bioanalytes by mimicking natural recognition. For scientists working with biosensors, MIPs might be considered as alternatives to natural receptors, such as antibodies, enzymes, or histones.
doi_str_mv 10.1016/j.tibtech.2016.05.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826706887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0167779916300579</els_id><sourcerecordid>4225156241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-5b14d101c481914b86f17667a735ac0441f43a511fc83c7bcf533973ec26def33</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhEUCRuHBJ8MSxHXOgaldAV2rFAThbzsQpXhK72ElR3x5Hu4DUCyfL8jfj-b8h5CXQCiiIt_tqdt1s8XtV52tFeUUBHpENtFKVjCrxmGzygyylVOqEPEtpTyllUsFTclLLulXA2IbszuPsBofOjMWFC8n6FGJ6V1yGX8XW-OI6jBaX0cRiN91G52fnb4prNzlc8Wgx3Hg3u-DPnpMngxmTfXE8T8m3jx--bi_Lq8-fdtvzqxI5h7nkHTR9ToBNCwqarhUDSCGkkYwbpE0DQ8MMBxiwZSg7HDhjSjKLtejtwNgpeXPoexvDz8WmWU8uoR1H421Ykoa2FpKKtpUZff0A3Ycl-jxdphgwKpuGZ4ofKIwhpWgHnYNOJt5roHp1rff66FqvrjXlOrvOda-O3Zdusv3fqj9yM3B2AGzWceds1Amd9Wh7l8XNug_uv1-8f9ABR-cdmvGHvbfpXxqdak31l3Xh675BMEq5VOw39h2ldw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831307445</pqid></control><display><type>article</type><title>Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition?</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Cieplak, Maciej ; Kutner, Włodzimierz</creator><creatorcontrib>Cieplak, Maciej ; Kutner, Włodzimierz</creatorcontrib><description>Receptors generated by natural evolution in living organisms show an astonishing capacity for specifically recognizing target molecules. If applied as recognition units of biosensors, these receptors provide very high selectivity. However, they suffer from instability under measurement conditions, and low durability. Devising alternative robust artificial receptors circumvents these deficiencies. For instance, an antibody can be successfully replaced by a corresponding molecularly imprinted polymer (MIP), sometimes called a ‘plastic antibody’. Therefore, MIPs used as recognition units in chemical sensors are gaining increasing interest. In this review, we survey selected examples of MIPs used for determining target bioanalytes by mimicking natural recognition. For scientists working with biosensors, MIPs might be considered as alternatives to natural receptors, such as antibodies, enzymes, or histones.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2016.05.011</identifier><identifier>PMID: 27289133</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; aptamer-DNA ; artificial biosensor ; artificial enzyme ; artificial immunosensor ; Biosensing Techniques ; biosensor ; Biosensors ; Carbon ; Chemical bonds ; chemosensor ; Electrodes ; Enzymes ; Glucose ; Humans ; Internal Medicine ; Mice ; Molecular Imprinting ; molecularly imprinted polymer (MIP) ; Oxidation ; Polymerization ; Polymers ; Proteins ; selective recognition ; Synthetic Biology</subject><ispartof>Trends in biotechnology (Regular ed.), 2016-11, Vol.34 (11), p.922-941</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 01, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-5b14d101c481914b86f17667a735ac0441f43a511fc83c7bcf533973ec26def33</citedby><cites>FETCH-LOGICAL-c551t-5b14d101c481914b86f17667a735ac0441f43a511fc83c7bcf533973ec26def33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1831307445?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27289133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cieplak, Maciej</creatorcontrib><creatorcontrib>Kutner, Włodzimierz</creatorcontrib><title>Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition?</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Receptors generated by natural evolution in living organisms show an astonishing capacity for specifically recognizing target molecules. If applied as recognition units of biosensors, these receptors provide very high selectivity. However, they suffer from instability under measurement conditions, and low durability. Devising alternative robust artificial receptors circumvents these deficiencies. For instance, an antibody can be successfully replaced by a corresponding molecularly imprinted polymer (MIP), sometimes called a ‘plastic antibody’. Therefore, MIPs used as recognition units in chemical sensors are gaining increasing interest. In this review, we survey selected examples of MIPs used for determining target bioanalytes by mimicking natural recognition. For scientists working with biosensors, MIPs might be considered as alternatives to natural receptors, such as antibodies, enzymes, or histones.</description><subject>Animals</subject><subject>aptamer-DNA</subject><subject>artificial biosensor</subject><subject>artificial enzyme</subject><subject>artificial immunosensor</subject><subject>Biosensing Techniques</subject><subject>biosensor</subject><subject>Biosensors</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>chemosensor</subject><subject>Electrodes</subject><subject>Enzymes</subject><subject>Glucose</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Mice</subject><subject>Molecular Imprinting</subject><subject>molecularly imprinted polymer (MIP)</subject><subject>Oxidation</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Proteins</subject><subject>selective recognition</subject><subject>Synthetic Biology</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFu1DAQhi0EokvhEUCRuHBJ8MSxHXOgaldAV2rFAThbzsQpXhK72ElR3x5Hu4DUCyfL8jfj-b8h5CXQCiiIt_tqdt1s8XtV52tFeUUBHpENtFKVjCrxmGzygyylVOqEPEtpTyllUsFTclLLulXA2IbszuPsBofOjMWFC8n6FGJ6V1yGX8XW-OI6jBaX0cRiN91G52fnb4prNzlc8Wgx3Hg3u-DPnpMngxmTfXE8T8m3jx--bi_Lq8-fdtvzqxI5h7nkHTR9ToBNCwqarhUDSCGkkYwbpE0DQ8MMBxiwZSg7HDhjSjKLtejtwNgpeXPoexvDz8WmWU8uoR1H421Ykoa2FpKKtpUZff0A3Ycl-jxdphgwKpuGZ4ofKIwhpWgHnYNOJt5roHp1rff66FqvrjXlOrvOda-O3Zdusv3fqj9yM3B2AGzWceds1Amd9Wh7l8XNug_uv1-8f9ABR-cdmvGHvbfpXxqdak31l3Xh675BMEq5VOw39h2ldw</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Cieplak, Maciej</creator><creator>Kutner, Włodzimierz</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20161101</creationdate><title>Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition?</title><author>Cieplak, Maciej ; Kutner, Włodzimierz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-5b14d101c481914b86f17667a735ac0441f43a511fc83c7bcf533973ec26def33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>aptamer-DNA</topic><topic>artificial biosensor</topic><topic>artificial enzyme</topic><topic>artificial immunosensor</topic><topic>Biosensing Techniques</topic><topic>biosensor</topic><topic>Biosensors</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>chemosensor</topic><topic>Electrodes</topic><topic>Enzymes</topic><topic>Glucose</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Mice</topic><topic>Molecular Imprinting</topic><topic>molecularly imprinted polymer (MIP)</topic><topic>Oxidation</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Proteins</topic><topic>selective recognition</topic><topic>Synthetic Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cieplak, Maciej</creatorcontrib><creatorcontrib>Kutner, Włodzimierz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cieplak, Maciej</au><au>Kutner, Włodzimierz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition?</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>34</volume><issue>11</issue><spage>922</spage><epage>941</epage><pages>922-941</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Receptors generated by natural evolution in living organisms show an astonishing capacity for specifically recognizing target molecules. If applied as recognition units of biosensors, these receptors provide very high selectivity. However, they suffer from instability under measurement conditions, and low durability. Devising alternative robust artificial receptors circumvents these deficiencies. For instance, an antibody can be successfully replaced by a corresponding molecularly imprinted polymer (MIP), sometimes called a ‘plastic antibody’. Therefore, MIPs used as recognition units in chemical sensors are gaining increasing interest. In this review, we survey selected examples of MIPs used for determining target bioanalytes by mimicking natural recognition. For scientists working with biosensors, MIPs might be considered as alternatives to natural receptors, such as antibodies, enzymes, or histones.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27289133</pmid><doi>10.1016/j.tibtech.2016.05.011</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7799
ispartof Trends in biotechnology (Regular ed.), 2016-11, Vol.34 (11), p.922-941
issn 0167-7799
1879-3096
language eng
recordid cdi_proquest_miscellaneous_1826706887
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Animals
aptamer-DNA
artificial biosensor
artificial enzyme
artificial immunosensor
Biosensing Techniques
biosensor
Biosensors
Carbon
Chemical bonds
chemosensor
Electrodes
Enzymes
Glucose
Humans
Internal Medicine
Mice
Molecular Imprinting
molecularly imprinted polymer (MIP)
Oxidation
Polymerization
Polymers
Proteins
selective recognition
Synthetic Biology
title Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Biosensors:%20How%20Can%20Molecular%20Imprinting%20Mimic%20Biorecognition?&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Cieplak,%20Maciej&rft.date=2016-11-01&rft.volume=34&rft.issue=11&rft.spage=922&rft.epage=941&rft.pages=922-941&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2016.05.011&rft_dat=%3Cproquest_cross%3E4225156241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831307445&rft_id=info:pmid/27289133&rft_els_id=1_s2_0_S0167779916300579&rfr_iscdi=true