Ontology-Based Semantic Image Segmentation Using Mixture Models and Multiple CRFs
Semantic image segmentation is a fundamental yet challenging problem, which can be viewed as an extension of the conventional object detection with close relation to image segmentation and classification. It aims to partition images into non-overlapping regions that are assigned predefined semantic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2016-07, Vol.25 (7), p.3233-3248 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3248 |
---|---|
container_issue | 7 |
container_start_page | 3233 |
container_title | IEEE transactions on image processing |
container_volume | 25 |
creator | Zand, Mohsen Doraisamy, Shyamala Abdul Halin, Alfian Mustaffa, Mas Rina |
description | Semantic image segmentation is a fundamental yet challenging problem, which can be viewed as an extension of the conventional object detection with close relation to image segmentation and classification. It aims to partition images into non-overlapping regions that are assigned predefined semantic labels. Most of the existing approaches utilize and integrate low-level local features and high-level contextual cues, which are fed into an inference framework such as, the conditional random field (CRF). However, the lack of meaning in the primitives (i.e., pixels or superpixels) and the cues provides low discriminatory capabilities, since they are rarely object-consistent. Moreover, blind combinations of heterogeneous features and contextual cues exploitation through limited neighborhood relations in the CRFs tend to degrade the labeling performance. This paper proposes an ontology-based semantic image segmentation (OBSIS) approach that jointly models image segmentation and object detection. In particular, a Dirichlet process mixture model transforms the low-level visual space into an intermediate semantic space, which drastically reduces the feature dimensionality. These features are then individually weighed and independently learned within the context, using multiple CRFs. The segmentation of images into object parts is hence reduced to a classification task, where object inference is passed to an ontology model. This model resembles the way by which humans understand the images through the combination of different cues, context models, and rule-based learning of the ontologies. Experimental evaluations using the MSRC-21 and PASCAL VOC'2010 data sets show promising results. |
doi_str_mv | 10.1109/TIP.2016.2552401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826676969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7450190</ieee_id><sourcerecordid>1826676969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-406e200d761e052d5e9f5b17ef24f250a656c99325945407aa2f24c59af99c053</originalsourceid><addsrcrecordid>eNqNkctLAzEQh4MoPqp3QZAFL162zqR5NEctVguW-jyHuDtbtuyjbnbB_vemtnrw5CkT5psfzHyMnSL0EcFcvU4e-xxQ9bmUXADusEM0AmMAwXdDDVLHGoU5YEfeLwBQSFT77IBr0IhaHLKnWdXWRT1fxTfOUxq9UOmqNk-iSenmFL7zkqrWtXldRW8-r-bRNP9su4aiaZ1S4SNXpdG0K9p8WVA0eh77Y7aXucLTyfbtsbfx7evoPn6Y3U1G1w9xIjhvYwGKOECqFRJInkoymXxHTRkXGZfglFSJMQMujZACtHM8dBJpXGZMAnLQY5eb3GVTf3TkW1vmPqGicBXVnbc45EppZZT5B4oKNB9KFdCLP-ii7poqLGJRm3A1xb8DYUMlTe19Q5ldNnnpmpVFsGszNpixazN2ayaMnG-Du_eS0t-BHxUBONsAORH9trWQgAYGXwIcjq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790716269</pqid></control><display><type>article</type><title>Ontology-Based Semantic Image Segmentation Using Mixture Models and Multiple CRFs</title><source>IEEE Electronic Library (IEL)</source><creator>Zand, Mohsen ; Doraisamy, Shyamala ; Abdul Halin, Alfian ; Mustaffa, Mas Rina</creator><creatorcontrib>Zand, Mohsen ; Doraisamy, Shyamala ; Abdul Halin, Alfian ; Mustaffa, Mas Rina</creatorcontrib><description>Semantic image segmentation is a fundamental yet challenging problem, which can be viewed as an extension of the conventional object detection with close relation to image segmentation and classification. It aims to partition images into non-overlapping regions that are assigned predefined semantic labels. Most of the existing approaches utilize and integrate low-level local features and high-level contextual cues, which are fed into an inference framework such as, the conditional random field (CRF). However, the lack of meaning in the primitives (i.e., pixels or superpixels) and the cues provides low discriminatory capabilities, since they are rarely object-consistent. Moreover, blind combinations of heterogeneous features and contextual cues exploitation through limited neighborhood relations in the CRFs tend to degrade the labeling performance. This paper proposes an ontology-based semantic image segmentation (OBSIS) approach that jointly models image segmentation and object detection. In particular, a Dirichlet process mixture model transforms the low-level visual space into an intermediate semantic space, which drastically reduces the feature dimensionality. These features are then individually weighed and independently learned within the context, using multiple CRFs. The segmentation of images into object parts is hence reduced to a classification task, where object inference is passed to an ontology model. This model resembles the way by which humans understand the images through the combination of different cues, context models, and rule-based learning of the ontologies. Experimental evaluations using the MSRC-21 and PASCAL VOC'2010 data sets show promising results.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2016.2552401</identifier><identifier>PMID: 27071174</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Classification ; CRF ; Cues ; Dirichlet problem ; Image color analysis ; Image segmentation ; Inference ; Knowledge representation ; Labeling ; Markov analysis ; Mixture Models ; Object detection ; Ontologies ; Ontology ; Semantic image segmentation ; Semantics ; Visualization</subject><ispartof>IEEE transactions on image processing, 2016-07, Vol.25 (7), p.3233-3248</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-406e200d761e052d5e9f5b17ef24f250a656c99325945407aa2f24c59af99c053</citedby><cites>FETCH-LOGICAL-c422t-406e200d761e052d5e9f5b17ef24f250a656c99325945407aa2f24c59af99c053</cites><orcidid>0000-0001-8177-6000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7450190$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27071174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zand, Mohsen</creatorcontrib><creatorcontrib>Doraisamy, Shyamala</creatorcontrib><creatorcontrib>Abdul Halin, Alfian</creatorcontrib><creatorcontrib>Mustaffa, Mas Rina</creatorcontrib><title>Ontology-Based Semantic Image Segmentation Using Mixture Models and Multiple CRFs</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Semantic image segmentation is a fundamental yet challenging problem, which can be viewed as an extension of the conventional object detection with close relation to image segmentation and classification. It aims to partition images into non-overlapping regions that are assigned predefined semantic labels. Most of the existing approaches utilize and integrate low-level local features and high-level contextual cues, which are fed into an inference framework such as, the conditional random field (CRF). However, the lack of meaning in the primitives (i.e., pixels or superpixels) and the cues provides low discriminatory capabilities, since they are rarely object-consistent. Moreover, blind combinations of heterogeneous features and contextual cues exploitation through limited neighborhood relations in the CRFs tend to degrade the labeling performance. This paper proposes an ontology-based semantic image segmentation (OBSIS) approach that jointly models image segmentation and object detection. In particular, a Dirichlet process mixture model transforms the low-level visual space into an intermediate semantic space, which drastically reduces the feature dimensionality. These features are then individually weighed and independently learned within the context, using multiple CRFs. The segmentation of images into object parts is hence reduced to a classification task, where object inference is passed to an ontology model. This model resembles the way by which humans understand the images through the combination of different cues, context models, and rule-based learning of the ontologies. Experimental evaluations using the MSRC-21 and PASCAL VOC'2010 data sets show promising results.</description><subject>Classification</subject><subject>CRF</subject><subject>Cues</subject><subject>Dirichlet problem</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Inference</subject><subject>Knowledge representation</subject><subject>Labeling</subject><subject>Markov analysis</subject><subject>Mixture Models</subject><subject>Object detection</subject><subject>Ontologies</subject><subject>Ontology</subject><subject>Semantic image segmentation</subject><subject>Semantics</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNqNkctLAzEQh4MoPqp3QZAFL162zqR5NEctVguW-jyHuDtbtuyjbnbB_vemtnrw5CkT5psfzHyMnSL0EcFcvU4e-xxQ9bmUXADusEM0AmMAwXdDDVLHGoU5YEfeLwBQSFT77IBr0IhaHLKnWdXWRT1fxTfOUxq9UOmqNk-iSenmFL7zkqrWtXldRW8-r-bRNP9su4aiaZ1S4SNXpdG0K9p8WVA0eh77Y7aXucLTyfbtsbfx7evoPn6Y3U1G1w9xIjhvYwGKOECqFRJInkoymXxHTRkXGZfglFSJMQMujZACtHM8dBJpXGZMAnLQY5eb3GVTf3TkW1vmPqGicBXVnbc45EppZZT5B4oKNB9KFdCLP-ii7poqLGJRm3A1xb8DYUMlTe19Q5ldNnnpmpVFsGszNpixazN2ayaMnG-Du_eS0t-BHxUBONsAORH9trWQgAYGXwIcjq8</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Zand, Mohsen</creator><creator>Doraisamy, Shyamala</creator><creator>Abdul Halin, Alfian</creator><creator>Mustaffa, Mas Rina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8177-6000</orcidid></search><sort><creationdate>20160701</creationdate><title>Ontology-Based Semantic Image Segmentation Using Mixture Models and Multiple CRFs</title><author>Zand, Mohsen ; Doraisamy, Shyamala ; Abdul Halin, Alfian ; Mustaffa, Mas Rina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-406e200d761e052d5e9f5b17ef24f250a656c99325945407aa2f24c59af99c053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classification</topic><topic>CRF</topic><topic>Cues</topic><topic>Dirichlet problem</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Inference</topic><topic>Knowledge representation</topic><topic>Labeling</topic><topic>Markov analysis</topic><topic>Mixture Models</topic><topic>Object detection</topic><topic>Ontologies</topic><topic>Ontology</topic><topic>Semantic image segmentation</topic><topic>Semantics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zand, Mohsen</creatorcontrib><creatorcontrib>Doraisamy, Shyamala</creatorcontrib><creatorcontrib>Abdul Halin, Alfian</creatorcontrib><creatorcontrib>Mustaffa, Mas Rina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zand, Mohsen</au><au>Doraisamy, Shyamala</au><au>Abdul Halin, Alfian</au><au>Mustaffa, Mas Rina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ontology-Based Semantic Image Segmentation Using Mixture Models and Multiple CRFs</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>25</volume><issue>7</issue><spage>3233</spage><epage>3248</epage><pages>3233-3248</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Semantic image segmentation is a fundamental yet challenging problem, which can be viewed as an extension of the conventional object detection with close relation to image segmentation and classification. It aims to partition images into non-overlapping regions that are assigned predefined semantic labels. Most of the existing approaches utilize and integrate low-level local features and high-level contextual cues, which are fed into an inference framework such as, the conditional random field (CRF). However, the lack of meaning in the primitives (i.e., pixels or superpixels) and the cues provides low discriminatory capabilities, since they are rarely object-consistent. Moreover, blind combinations of heterogeneous features and contextual cues exploitation through limited neighborhood relations in the CRFs tend to degrade the labeling performance. This paper proposes an ontology-based semantic image segmentation (OBSIS) approach that jointly models image segmentation and object detection. In particular, a Dirichlet process mixture model transforms the low-level visual space into an intermediate semantic space, which drastically reduces the feature dimensionality. These features are then individually weighed and independently learned within the context, using multiple CRFs. The segmentation of images into object parts is hence reduced to a classification task, where object inference is passed to an ontology model. This model resembles the way by which humans understand the images through the combination of different cues, context models, and rule-based learning of the ontologies. Experimental evaluations using the MSRC-21 and PASCAL VOC'2010 data sets show promising results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27071174</pmid><doi>10.1109/TIP.2016.2552401</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8177-6000</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2016-07, Vol.25 (7), p.3233-3248 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826676969 |
source | IEEE Electronic Library (IEL) |
subjects | Classification CRF Cues Dirichlet problem Image color analysis Image segmentation Inference Knowledge representation Labeling Markov analysis Mixture Models Object detection Ontologies Ontology Semantic image segmentation Semantics Visualization |
title | Ontology-Based Semantic Image Segmentation Using Mixture Models and Multiple CRFs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ontology-Based%20Semantic%20Image%20Segmentation%20Using%20Mixture%20Models%20and%20Multiple%20CRFs&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zand,%20Mohsen&rft.date=2016-07-01&rft.volume=25&rft.issue=7&rft.spage=3233&rft.epage=3248&rft.pages=3233-3248&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2016.2552401&rft_dat=%3Cproquest_cross%3E1826676969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790716269&rft_id=info:pmid/27071174&rft_ieee_id=7450190&rfr_iscdi=true |