The Addiction-Related Protein ANKK1 is Differentially Expressed During the Cell Cycle in Neural Precursors

TaqIA is a polymorphism associated with addictions and dopamine-related traits. It is located in the ankyrin repeat and kinase domain containing 1 gene (ANKK1) nearby the gene for the dopamine D2 receptor (D2R). Since ANKK1 function is unknown, TaqIA-associated traits have been explained only by dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2017-05, Vol.27 (5), p.2809-2819
Hauptverfasser: España-Serrano, Laura, Guerra Martín-Palanco, Noelia, Montero-Pedrazuela, Ana, Pérez-Santamarina, Estela, Vidal, Rebeca, García-Consuegra, Inés, Valdizán, Elsa María, Pazos, Angel, Palomo, Tomás, Jiménez-Arriero, Miguel Ángel, Guadaño-Ferraz, Ana, Hoenicka, Janet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2819
container_issue 5
container_start_page 2809
container_title Cerebral cortex (New York, N.Y. 1991)
container_volume 27
creator España-Serrano, Laura
Guerra Martín-Palanco, Noelia
Montero-Pedrazuela, Ana
Pérez-Santamarina, Estela
Vidal, Rebeca
García-Consuegra, Inés
Valdizán, Elsa María
Pazos, Angel
Palomo, Tomás
Jiménez-Arriero, Miguel Ángel
Guadaño-Ferraz, Ana
Hoenicka, Janet
description TaqIA is a polymorphism associated with addictions and dopamine-related traits. It is located in the ankyrin repeat and kinase domain containing 1 gene (ANKK1) nearby the gene for the dopamine D2 receptor (D2R). Since ANKK1 function is unknown, TaqIA-associated traits have been explained only by differences in D2R. Here we report ANKK1 studies in mouse and human brain using quantitative real-time PCR, Western blot, immunohistochemistry, and flow cytometry. ANKK1 mRNA and protein isoforms vary along neurodevelopment in the human and mouse brain. In mouse adult brain ANKK1 is located in astrocytes, nuclei of postmitotic neurons and neural precursors from neurogenic niches. In both embryos and adults, nuclei of neural precursors show significant variation of ANKK1 intensity. We demonstrate a correlation between ANKK1 and the cell cycle. Cell synchronization experiments showed a significant increment of ANKK1-kinase in mitotic cells while ANKK1-kinase overexpression affects G1 and M phase that were found to be modulated by ANKK1 alleles and apomorphine treatment. Furthermore, during embryonic neurogenesis ANKK1 was expressed in slow-dividing neuroblasts and rapidly dividing precursors which are mitotic cells. These results suggest a role of ANKK1 during the cell cycle in neural precursors thus providing biological support to brain structure involvement in the TaqIA-associated phenotypes.
doi_str_mv 10.1093/cercor/bhw129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826676886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826676886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-b8857f9697c75667cc5241ece68c4a5ee4041c28ec8b153d8b12f6c53c5bd6e63</originalsourceid><addsrcrecordid>eNo9kM9PwjAUgBujEUSPXk2PXiZrt7XdkQD-CASNwfOyvb1JSdmw3aL895YMvfT18L0vLx8htyx8YGEajQEtNHZcbL4ZT8_IkMUiDDhL03P_D2MZRJyxAblybhuGTPKEX5IBl0wIJuSQbNcbpJOy1NDqpg7e0eQtlvTNNi3qmk5WiwWj2tGZriq0WLc6N-ZA5z97i855ctZZXX_S1mumaAydHsAg9asr7GxuvAmhs66x7ppcVLlxeHOaI_LxOF9Pn4Pl69PLdLIMIIp4GxRKJbJKRSpBJkJIgITHDAGFgjhPEOMwZsAVgipYEpX-5ZWAJIKkKAWKaETue-_eNl8dujbbaQf-trzGpnMZU9xrhVJHNOhRsI1zFqtsb_Uut4eMhdkxb9bnzfq8nr87qbtih-U__dcz-gU27Xg6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826676886</pqid></control><display><type>article</type><title>The Addiction-Related Protein ANKK1 is Differentially Expressed During the Cell Cycle in Neural Precursors</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>España-Serrano, Laura ; Guerra Martín-Palanco, Noelia ; Montero-Pedrazuela, Ana ; Pérez-Santamarina, Estela ; Vidal, Rebeca ; García-Consuegra, Inés ; Valdizán, Elsa María ; Pazos, Angel ; Palomo, Tomás ; Jiménez-Arriero, Miguel Ángel ; Guadaño-Ferraz, Ana ; Hoenicka, Janet</creator><creatorcontrib>España-Serrano, Laura ; Guerra Martín-Palanco, Noelia ; Montero-Pedrazuela, Ana ; Pérez-Santamarina, Estela ; Vidal, Rebeca ; García-Consuegra, Inés ; Valdizán, Elsa María ; Pazos, Angel ; Palomo, Tomás ; Jiménez-Arriero, Miguel Ángel ; Guadaño-Ferraz, Ana ; Hoenicka, Janet</creatorcontrib><description>TaqIA is a polymorphism associated with addictions and dopamine-related traits. It is located in the ankyrin repeat and kinase domain containing 1 gene (ANKK1) nearby the gene for the dopamine D2 receptor (D2R). Since ANKK1 function is unknown, TaqIA-associated traits have been explained only by differences in D2R. Here we report ANKK1 studies in mouse and human brain using quantitative real-time PCR, Western blot, immunohistochemistry, and flow cytometry. ANKK1 mRNA and protein isoforms vary along neurodevelopment in the human and mouse brain. In mouse adult brain ANKK1 is located in astrocytes, nuclei of postmitotic neurons and neural precursors from neurogenic niches. In both embryos and adults, nuclei of neural precursors show significant variation of ANKK1 intensity. We demonstrate a correlation between ANKK1 and the cell cycle. Cell synchronization experiments showed a significant increment of ANKK1-kinase in mitotic cells while ANKK1-kinase overexpression affects G1 and M phase that were found to be modulated by ANKK1 alleles and apomorphine treatment. Furthermore, during embryonic neurogenesis ANKK1 was expressed in slow-dividing neuroblasts and rapidly dividing precursors which are mitotic cells. These results suggest a role of ANKK1 during the cell cycle in neural precursors thus providing biological support to brain structure involvement in the TaqIA-associated phenotypes.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhw129</identifier><identifier>PMID: 27166167</identifier><language>eng</language><publisher>United States</publisher><subject>Adolescent ; Age Factors ; Animals ; Animals, Newborn ; Brain - embryology ; Brain - growth &amp; development ; Brain - metabolism ; Cell Cycle - physiology ; Cell Differentiation - physiology ; Cell Line, Tumor ; Embryo, Mammalian ; Fetus ; Gene Expression Regulation, Developmental - genetics ; Gestational Age ; Glial Fibrillary Acidic Protein - metabolism ; Humans ; Infant ; Mice ; Middle Aged ; Neural Stem Cells - physiology ; Neurogenesis - physiology ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; RNA, Messenger - metabolism ; Tubulin - genetics ; Tubulin - metabolism</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2017-05, Vol.27 (5), p.2809-2819</ispartof><rights>The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-b8857f9697c75667cc5241ece68c4a5ee4041c28ec8b153d8b12f6c53c5bd6e63</citedby><cites>FETCH-LOGICAL-c332t-b8857f9697c75667cc5241ece68c4a5ee4041c28ec8b153d8b12f6c53c5bd6e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27166167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>España-Serrano, Laura</creatorcontrib><creatorcontrib>Guerra Martín-Palanco, Noelia</creatorcontrib><creatorcontrib>Montero-Pedrazuela, Ana</creatorcontrib><creatorcontrib>Pérez-Santamarina, Estela</creatorcontrib><creatorcontrib>Vidal, Rebeca</creatorcontrib><creatorcontrib>García-Consuegra, Inés</creatorcontrib><creatorcontrib>Valdizán, Elsa María</creatorcontrib><creatorcontrib>Pazos, Angel</creatorcontrib><creatorcontrib>Palomo, Tomás</creatorcontrib><creatorcontrib>Jiménez-Arriero, Miguel Ángel</creatorcontrib><creatorcontrib>Guadaño-Ferraz, Ana</creatorcontrib><creatorcontrib>Hoenicka, Janet</creatorcontrib><title>The Addiction-Related Protein ANKK1 is Differentially Expressed During the Cell Cycle in Neural Precursors</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>TaqIA is a polymorphism associated with addictions and dopamine-related traits. It is located in the ankyrin repeat and kinase domain containing 1 gene (ANKK1) nearby the gene for the dopamine D2 receptor (D2R). Since ANKK1 function is unknown, TaqIA-associated traits have been explained only by differences in D2R. Here we report ANKK1 studies in mouse and human brain using quantitative real-time PCR, Western blot, immunohistochemistry, and flow cytometry. ANKK1 mRNA and protein isoforms vary along neurodevelopment in the human and mouse brain. In mouse adult brain ANKK1 is located in astrocytes, nuclei of postmitotic neurons and neural precursors from neurogenic niches. In both embryos and adults, nuclei of neural precursors show significant variation of ANKK1 intensity. We demonstrate a correlation between ANKK1 and the cell cycle. Cell synchronization experiments showed a significant increment of ANKK1-kinase in mitotic cells while ANKK1-kinase overexpression affects G1 and M phase that were found to be modulated by ANKK1 alleles and apomorphine treatment. Furthermore, during embryonic neurogenesis ANKK1 was expressed in slow-dividing neuroblasts and rapidly dividing precursors which are mitotic cells. These results suggest a role of ANKK1 during the cell cycle in neural precursors thus providing biological support to brain structure involvement in the TaqIA-associated phenotypes.</description><subject>Adolescent</subject><subject>Age Factors</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain - embryology</subject><subject>Brain - growth &amp; development</subject><subject>Brain - metabolism</subject><subject>Cell Cycle - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line, Tumor</subject><subject>Embryo, Mammalian</subject><subject>Fetus</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Gestational Age</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Humans</subject><subject>Infant</subject><subject>Mice</subject><subject>Middle Aged</subject><subject>Neural Stem Cells - physiology</subject><subject>Neurogenesis - physiology</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Tubulin - genetics</subject><subject>Tubulin - metabolism</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM9PwjAUgBujEUSPXk2PXiZrt7XdkQD-CASNwfOyvb1JSdmw3aL895YMvfT18L0vLx8htyx8YGEajQEtNHZcbL4ZT8_IkMUiDDhL03P_D2MZRJyxAblybhuGTPKEX5IBl0wIJuSQbNcbpJOy1NDqpg7e0eQtlvTNNi3qmk5WiwWj2tGZriq0WLc6N-ZA5z97i855ctZZXX_S1mumaAydHsAg9asr7GxuvAmhs66x7ppcVLlxeHOaI_LxOF9Pn4Pl69PLdLIMIIp4GxRKJbJKRSpBJkJIgITHDAGFgjhPEOMwZsAVgipYEpX-5ZWAJIKkKAWKaETue-_eNl8dujbbaQf-trzGpnMZU9xrhVJHNOhRsI1zFqtsb_Uut4eMhdkxb9bnzfq8nr87qbtih-U__dcz-gU27Xg6</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>España-Serrano, Laura</creator><creator>Guerra Martín-Palanco, Noelia</creator><creator>Montero-Pedrazuela, Ana</creator><creator>Pérez-Santamarina, Estela</creator><creator>Vidal, Rebeca</creator><creator>García-Consuegra, Inés</creator><creator>Valdizán, Elsa María</creator><creator>Pazos, Angel</creator><creator>Palomo, Tomás</creator><creator>Jiménez-Arriero, Miguel Ángel</creator><creator>Guadaño-Ferraz, Ana</creator><creator>Hoenicka, Janet</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170501</creationdate><title>The Addiction-Related Protein ANKK1 is Differentially Expressed During the Cell Cycle in Neural Precursors</title><author>España-Serrano, Laura ; Guerra Martín-Palanco, Noelia ; Montero-Pedrazuela, Ana ; Pérez-Santamarina, Estela ; Vidal, Rebeca ; García-Consuegra, Inés ; Valdizán, Elsa María ; Pazos, Angel ; Palomo, Tomás ; Jiménez-Arriero, Miguel Ángel ; Guadaño-Ferraz, Ana ; Hoenicka, Janet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-b8857f9697c75667cc5241ece68c4a5ee4041c28ec8b153d8b12f6c53c5bd6e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Age Factors</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain - embryology</topic><topic>Brain - growth &amp; development</topic><topic>Brain - metabolism</topic><topic>Cell Cycle - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line, Tumor</topic><topic>Embryo, Mammalian</topic><topic>Fetus</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Gestational Age</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Humans</topic><topic>Infant</topic><topic>Mice</topic><topic>Middle Aged</topic><topic>Neural Stem Cells - physiology</topic><topic>Neurogenesis - physiology</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Tubulin - genetics</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>España-Serrano, Laura</creatorcontrib><creatorcontrib>Guerra Martín-Palanco, Noelia</creatorcontrib><creatorcontrib>Montero-Pedrazuela, Ana</creatorcontrib><creatorcontrib>Pérez-Santamarina, Estela</creatorcontrib><creatorcontrib>Vidal, Rebeca</creatorcontrib><creatorcontrib>García-Consuegra, Inés</creatorcontrib><creatorcontrib>Valdizán, Elsa María</creatorcontrib><creatorcontrib>Pazos, Angel</creatorcontrib><creatorcontrib>Palomo, Tomás</creatorcontrib><creatorcontrib>Jiménez-Arriero, Miguel Ángel</creatorcontrib><creatorcontrib>Guadaño-Ferraz, Ana</creatorcontrib><creatorcontrib>Hoenicka, Janet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>España-Serrano, Laura</au><au>Guerra Martín-Palanco, Noelia</au><au>Montero-Pedrazuela, Ana</au><au>Pérez-Santamarina, Estela</au><au>Vidal, Rebeca</au><au>García-Consuegra, Inés</au><au>Valdizán, Elsa María</au><au>Pazos, Angel</au><au>Palomo, Tomás</au><au>Jiménez-Arriero, Miguel Ángel</au><au>Guadaño-Ferraz, Ana</au><au>Hoenicka, Janet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Addiction-Related Protein ANKK1 is Differentially Expressed During the Cell Cycle in Neural Precursors</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>27</volume><issue>5</issue><spage>2809</spage><epage>2819</epage><pages>2809-2819</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>TaqIA is a polymorphism associated with addictions and dopamine-related traits. It is located in the ankyrin repeat and kinase domain containing 1 gene (ANKK1) nearby the gene for the dopamine D2 receptor (D2R). Since ANKK1 function is unknown, TaqIA-associated traits have been explained only by differences in D2R. Here we report ANKK1 studies in mouse and human brain using quantitative real-time PCR, Western blot, immunohistochemistry, and flow cytometry. ANKK1 mRNA and protein isoforms vary along neurodevelopment in the human and mouse brain. In mouse adult brain ANKK1 is located in astrocytes, nuclei of postmitotic neurons and neural precursors from neurogenic niches. In both embryos and adults, nuclei of neural precursors show significant variation of ANKK1 intensity. We demonstrate a correlation between ANKK1 and the cell cycle. Cell synchronization experiments showed a significant increment of ANKK1-kinase in mitotic cells while ANKK1-kinase overexpression affects G1 and M phase that were found to be modulated by ANKK1 alleles and apomorphine treatment. Furthermore, during embryonic neurogenesis ANKK1 was expressed in slow-dividing neuroblasts and rapidly dividing precursors which are mitotic cells. These results suggest a role of ANKK1 during the cell cycle in neural precursors thus providing biological support to brain structure involvement in the TaqIA-associated phenotypes.</abstract><cop>United States</cop><pmid>27166167</pmid><doi>10.1093/cercor/bhw129</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-3211
ispartof Cerebral cortex (New York, N.Y. 1991), 2017-05, Vol.27 (5), p.2809-2819
issn 1047-3211
1460-2199
language eng
recordid cdi_proquest_miscellaneous_1826676886
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adolescent
Age Factors
Animals
Animals, Newborn
Brain - embryology
Brain - growth & development
Brain - metabolism
Cell Cycle - physiology
Cell Differentiation - physiology
Cell Line, Tumor
Embryo, Mammalian
Fetus
Gene Expression Regulation, Developmental - genetics
Gestational Age
Glial Fibrillary Acidic Protein - metabolism
Humans
Infant
Mice
Middle Aged
Neural Stem Cells - physiology
Neurogenesis - physiology
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
RNA, Messenger - metabolism
Tubulin - genetics
Tubulin - metabolism
title The Addiction-Related Protein ANKK1 is Differentially Expressed During the Cell Cycle in Neural Precursors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Addiction-Related%20Protein%20ANKK1%20is%20Differentially%20Expressed%20During%20the%20Cell%20Cycle%20in%20Neural%20Precursors&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Espa%C3%B1a-Serrano,%20Laura&rft.date=2017-05-01&rft.volume=27&rft.issue=5&rft.spage=2809&rft.epage=2819&rft.pages=2809-2819&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhw129&rft_dat=%3Cproquest_cross%3E1826676886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826676886&rft_id=info:pmid/27166167&rfr_iscdi=true