Fast phase randomization via two-folds
A two-fold is a singular point on the discontinuity surface of a piecewise-smooth vector field, at which the vector field is tangent to the discontinuity surface on both sides. If an orbit passes through an invisible two-fold (also known as a Teixeira singularity) before settling to regular periodic...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2016-02, Vol.472 (2186), p.20150782-20150782 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20150782 |
---|---|
container_issue | 2186 |
container_start_page | 20150782 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 472 |
creator | Simpson, D. J. W. Jeffrey, M. R. |
description | A two-fold is a singular point on the discontinuity surface of a piecewise-smooth vector field, at which the vector field is tangent to the discontinuity surface on both sides. If an orbit passes through an invisible two-fold (also known as a Teixeira singularity) before settling to regular periodic motion, then the phase of that motion cannot be determined from initial conditions, and, in the presence of small noise, the asymptotic phase of a large number of sample solutions is highly random. In this paper, we show how the probability distribution of the asymptotic phase depends on the global nonlinear dynamics. We also show how the phase of a smooth oscillator can be randomized by applying a simple discontinuous control law that generates an invisible two-fold. We propose that such a control law can be used to desynchronize a collection of oscillators, and that this manner of phase randomization is fast compared with existing methods (which use fixed points as phase singularities), because there is no slowing of the dynamics near a two-fold. |
doi_str_mv | 10.1098/rspa.2015.0782 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826675853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826675853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-7ddd48892593ecbbb1192b7afecccae52df273f94007af02b7d3eb8346de5a423</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk6vHqUn8dKan216EWQ4FQZe9BzSJHUdbVOTdjL_elM2hx485SXv874vfAC4RDBBMOe3zncywRCxBGYcH4EpohmKcU7T41CTlMYMYjQBZ96vIYQ549kpmOAMIZ5DNAXXC-n7qFtJbyInW22b6kv2lW2jTSWj_tPGpa21Pwcnpay9udifM_C2eHidP8XLl8fn-f0yVpTQPs601pTzHLOcGFUUBUI5LjJZGqWUNAzrEmekzCmE4RGGliam4ISm2jBJMZmBu11uNxSN0cq0vZO16FzVSLcVVlbib6etVuLdbgTlFKUpCwE3-wBnPwbje9FUXpm6lq2xgxeI4zTNGGckoMkOVc5670x5WIOgGOWKUa4Y5YpRbhi4-v25A_5jMwBkBzi7DZasqky_FWs7uDZc_4v9BpxQiCo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826675853</pqid></control><display><type>article</type><title>Fast phase randomization via two-folds</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Simpson, D. J. W. ; Jeffrey, M. R.</creator><creatorcontrib>Simpson, D. J. W. ; Jeffrey, M. R.</creatorcontrib><description>A two-fold is a singular point on the discontinuity surface of a piecewise-smooth vector field, at which the vector field is tangent to the discontinuity surface on both sides. If an orbit passes through an invisible two-fold (also known as a Teixeira singularity) before settling to regular periodic motion, then the phase of that motion cannot be determined from initial conditions, and, in the presence of small noise, the asymptotic phase of a large number of sample solutions is highly random. In this paper, we show how the probability distribution of the asymptotic phase depends on the global nonlinear dynamics. We also show how the phase of a smooth oscillator can be randomized by applying a simple discontinuous control law that generates an invisible two-fold. We propose that such a control law can be used to desynchronize a collection of oscillators, and that this manner of phase randomization is fast compared with existing methods (which use fixed points as phase singularities), because there is no slowing of the dynamics near a two-fold.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2015.0782</identifier><identifier>PMID: 27118901</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Desynchronization ; Filippov System ; Piecewise-Smooth ; Sliding Motion</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-02, Vol.472 (2186), p.20150782-20150782</ispartof><rights>2016 The Authors.</rights><rights>2016 The Authors. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-7ddd48892593ecbbb1192b7afecccae52df273f94007af02b7d3eb8346de5a423</citedby><cites>FETCH-LOGICAL-c434t-7ddd48892593ecbbb1192b7afecccae52df273f94007af02b7d3eb8346de5a423</cites><orcidid>0000-0002-0284-6283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27118901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simpson, D. J. W.</creatorcontrib><creatorcontrib>Jeffrey, M. R.</creatorcontrib><title>Fast phase randomization via two-folds</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc Math Phys Eng Sci</addtitle><description>A two-fold is a singular point on the discontinuity surface of a piecewise-smooth vector field, at which the vector field is tangent to the discontinuity surface on both sides. If an orbit passes through an invisible two-fold (also known as a Teixeira singularity) before settling to regular periodic motion, then the phase of that motion cannot be determined from initial conditions, and, in the presence of small noise, the asymptotic phase of a large number of sample solutions is highly random. In this paper, we show how the probability distribution of the asymptotic phase depends on the global nonlinear dynamics. We also show how the phase of a smooth oscillator can be randomized by applying a simple discontinuous control law that generates an invisible two-fold. We propose that such a control law can be used to desynchronize a collection of oscillators, and that this manner of phase randomization is fast compared with existing methods (which use fixed points as phase singularities), because there is no slowing of the dynamics near a two-fold.</description><subject>Desynchronization</subject><subject>Filippov System</subject><subject>Piecewise-Smooth</subject><subject>Sliding Motion</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk6vHqUn8dKan216EWQ4FQZe9BzSJHUdbVOTdjL_elM2hx485SXv874vfAC4RDBBMOe3zncywRCxBGYcH4EpohmKcU7T41CTlMYMYjQBZ96vIYQ549kpmOAMIZ5DNAXXC-n7qFtJbyInW22b6kv2lW2jTSWj_tPGpa21Pwcnpay9udifM_C2eHidP8XLl8fn-f0yVpTQPs601pTzHLOcGFUUBUI5LjJZGqWUNAzrEmekzCmE4RGGliam4ISm2jBJMZmBu11uNxSN0cq0vZO16FzVSLcVVlbib6etVuLdbgTlFKUpCwE3-wBnPwbje9FUXpm6lq2xgxeI4zTNGGckoMkOVc5670x5WIOgGOWKUa4Y5YpRbhi4-v25A_5jMwBkBzi7DZasqky_FWs7uDZc_4v9BpxQiCo</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Simpson, D. J. W.</creator><creator>Jeffrey, M. R.</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0284-6283</orcidid></search><sort><creationdate>20160201</creationdate><title>Fast phase randomization via two-folds</title><author>Simpson, D. J. W. ; Jeffrey, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-7ddd48892593ecbbb1192b7afecccae52df273f94007af02b7d3eb8346de5a423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Desynchronization</topic><topic>Filippov System</topic><topic>Piecewise-Smooth</topic><topic>Sliding Motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simpson, D. J. W.</creatorcontrib><creatorcontrib>Jeffrey, M. R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simpson, D. J. W.</au><au>Jeffrey, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast phase randomization via two-folds</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>472</volume><issue>2186</issue><spage>20150782</spage><epage>20150782</epage><pages>20150782-20150782</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A two-fold is a singular point on the discontinuity surface of a piecewise-smooth vector field, at which the vector field is tangent to the discontinuity surface on both sides. If an orbit passes through an invisible two-fold (also known as a Teixeira singularity) before settling to regular periodic motion, then the phase of that motion cannot be determined from initial conditions, and, in the presence of small noise, the asymptotic phase of a large number of sample solutions is highly random. In this paper, we show how the probability distribution of the asymptotic phase depends on the global nonlinear dynamics. We also show how the phase of a smooth oscillator can be randomized by applying a simple discontinuous control law that generates an invisible two-fold. We propose that such a control law can be used to desynchronize a collection of oscillators, and that this manner of phase randomization is fast compared with existing methods (which use fixed points as phase singularities), because there is no slowing of the dynamics near a two-fold.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>27118901</pmid><doi>10.1098/rspa.2015.0782</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0284-6283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-02, Vol.472 (2186), p.20150782-20150782 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826675853 |
source | Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Desynchronization Filippov System Piecewise-Smooth Sliding Motion |
title | Fast phase randomization via two-folds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20phase%20randomization%20via%20two-folds&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Simpson,%20D.%20J.%20W.&rft.date=2016-02-01&rft.volume=472&rft.issue=2186&rft.spage=20150782&rft.epage=20150782&rft.pages=20150782-20150782&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2015.0782&rft_dat=%3Cproquest_cross%3E1826675853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826675853&rft_id=info:pmid/27118901&rfr_iscdi=true |