Shape Estimation from Shading, Defocus, and Correspondence Using Light-Field Angular Coherence

Light-field cameras are quickly becoming commodity items, with consumer and industrial applications. They capture many nearby views simultaneously using a single image with a micro-lens array, thereby providing a wealth of cues for depth recovery: defocus, correspondence, and shading. In particular,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2017-03, Vol.39 (3), p.546-560
Hauptverfasser: Tao, Michael W., Srinivasan, Pratul P., Hadap, Sunil, Malik, Jitendra, Ramamoorthi, Ravi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue 3
container_start_page 546
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 39
creator Tao, Michael W.
Srinivasan, Pratul P.
Hadap, Sunil
Malik, Jitendra
Ramamoorthi, Ravi
description Light-field cameras are quickly becoming commodity items, with consumer and industrial applications. They capture many nearby views simultaneously using a single image with a micro-lens array, thereby providing a wealth of cues for depth recovery: defocus, correspondence, and shading. In particular, apart from conventional image shading, one can refocus images after acquisition, and shift one's viewpoint within the sub-apertures of the main lens, effectively obtaining multiple views. We present a principled algorithm for dense depth estimation that combines defocus and correspondence metrics. We then extend our analysis to the additional cue of shading, using it to refine fine details in the shape. By exploiting an all-in-focus image, in which pixels are expected to exhibit angular coherence, we define an optimization framework that integrates photo consistency, depth consistency, and shading consistency. We show that combining all three sources of information: defocus, correspondence, and shading, outperforms state-of-the-art light-field depth estimation algorithms in multiple scenarios.
doi_str_mv 10.1109/TPAMI.2016.2554121
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826672206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7452621</ieee_id><sourcerecordid>1866377457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-2e6da8753434f23169e9b5fff65c70ecf056401e0e4a0df3712e8d52dae6043a3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-AQVZ8OKhqfud5FjqV6GiYL0a1uxsm5Jm625y8N-7tdWDp4GZ550ZHoTOKRlRSvKb-cv4aTpihKoRk1JQRg9Qn-Y8T7jk-SHqxwlLsoxlPXQSwooQKiThx6jHUkqozLM-en9d6g3gu9BWa91WrsHWuzWOXVM1iyG-BevKLgyxbgyeOO8hbFxjoCkBv4WI4Fm1WLbJfQW1weNm0dXaR3AJfsucoiOr6wBn-zpAb_d388ljMnt-mE7Gs6QUQrQJA2V0lkouuLCMU5VD_iGttUqWKYHSEqkEoUBAaGIsTymDzEhmNCgiuOYDdL3bu_Hus4PQFusqlFDXugHXhYJmTKmUMaIievUPXbnON_G7SCnF01TINFJsR5XeheDBFhsfDfmvgpJia7_4sV9s7Rd7-zF0uV_dfazB_EV-dUfgYgdUAPA3jgeZivFvJtKHmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866377457</pqid></control><display><type>article</type><title>Shape Estimation from Shading, Defocus, and Correspondence Using Light-Field Angular Coherence</title><source>IEEE Electronic Library (IEL)</source><creator>Tao, Michael W. ; Srinivasan, Pratul P. ; Hadap, Sunil ; Malik, Jitendra ; Ramamoorthi, Ravi</creator><creatorcontrib>Tao, Michael W. ; Srinivasan, Pratul P. ; Hadap, Sunil ; Malik, Jitendra ; Ramamoorthi, Ravi</creatorcontrib><description>Light-field cameras are quickly becoming commodity items, with consumer and industrial applications. They capture many nearby views simultaneously using a single image with a micro-lens array, thereby providing a wealth of cues for depth recovery: defocus, correspondence, and shading. In particular, apart from conventional image shading, one can refocus images after acquisition, and shift one's viewpoint within the sub-apertures of the main lens, effectively obtaining multiple views. We present a principled algorithm for dense depth estimation that combines defocus and correspondence metrics. We then extend our analysis to the additional cue of shading, using it to refine fine details in the shape. By exploiting an all-in-focus image, in which pixels are expected to exhibit angular coherence, we define an optimization framework that integrates photo consistency, depth consistency, and shading consistency. We show that combining all three sources of information: defocus, correspondence, and shading, outperforms state-of-the-art light-field depth estimation algorithms in multiple scenarios.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2016.2554121</identifier><identifier>PMID: 27101598</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D reconstruction ; Apertures ; Cameras ; Coherence ; Consistency ; Cues ; depth cues ; Estimation ; Field cameras ; Geometry ; Image acquisition ; Industrial applications ; Lenses ; Light fields ; Lighting ; reflection components separation ; Shading ; Shape ; shape from shading ; specular-free image</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2017-03, Vol.39 (3), p.546-560</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-2e6da8753434f23169e9b5fff65c70ecf056401e0e4a0df3712e8d52dae6043a3</citedby><cites>FETCH-LOGICAL-c444t-2e6da8753434f23169e9b5fff65c70ecf056401e0e4a0df3712e8d52dae6043a3</cites><orcidid>0000-0002-6312-4989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7452621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7452621$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27101598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Michael W.</creatorcontrib><creatorcontrib>Srinivasan, Pratul P.</creatorcontrib><creatorcontrib>Hadap, Sunil</creatorcontrib><creatorcontrib>Malik, Jitendra</creatorcontrib><creatorcontrib>Ramamoorthi, Ravi</creatorcontrib><title>Shape Estimation from Shading, Defocus, and Correspondence Using Light-Field Angular Coherence</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Light-field cameras are quickly becoming commodity items, with consumer and industrial applications. They capture many nearby views simultaneously using a single image with a micro-lens array, thereby providing a wealth of cues for depth recovery: defocus, correspondence, and shading. In particular, apart from conventional image shading, one can refocus images after acquisition, and shift one's viewpoint within the sub-apertures of the main lens, effectively obtaining multiple views. We present a principled algorithm for dense depth estimation that combines defocus and correspondence metrics. We then extend our analysis to the additional cue of shading, using it to refine fine details in the shape. By exploiting an all-in-focus image, in which pixels are expected to exhibit angular coherence, we define an optimization framework that integrates photo consistency, depth consistency, and shading consistency. We show that combining all three sources of information: defocus, correspondence, and shading, outperforms state-of-the-art light-field depth estimation algorithms in multiple scenarios.</description><subject>3D reconstruction</subject><subject>Apertures</subject><subject>Cameras</subject><subject>Coherence</subject><subject>Consistency</subject><subject>Cues</subject><subject>depth cues</subject><subject>Estimation</subject><subject>Field cameras</subject><subject>Geometry</subject><subject>Image acquisition</subject><subject>Industrial applications</subject><subject>Lenses</subject><subject>Light fields</subject><subject>Lighting</subject><subject>reflection components separation</subject><subject>Shading</subject><subject>Shape</subject><subject>shape from shading</subject><subject>specular-free image</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3-AQVZ8OKhqfud5FjqV6GiYL0a1uxsm5Jm625y8N-7tdWDp4GZ550ZHoTOKRlRSvKb-cv4aTpihKoRk1JQRg9Qn-Y8T7jk-SHqxwlLsoxlPXQSwooQKiThx6jHUkqozLM-en9d6g3gu9BWa91WrsHWuzWOXVM1iyG-BevKLgyxbgyeOO8hbFxjoCkBv4WI4Fm1WLbJfQW1weNm0dXaR3AJfsucoiOr6wBn-zpAb_d388ljMnt-mE7Gs6QUQrQJA2V0lkouuLCMU5VD_iGttUqWKYHSEqkEoUBAaGIsTymDzEhmNCgiuOYDdL3bu_Hus4PQFusqlFDXugHXhYJmTKmUMaIievUPXbnON_G7SCnF01TINFJsR5XeheDBFhsfDfmvgpJia7_4sV9s7Rd7-zF0uV_dfazB_EV-dUfgYgdUAPA3jgeZivFvJtKHmQ</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Tao, Michael W.</creator><creator>Srinivasan, Pratul P.</creator><creator>Hadap, Sunil</creator><creator>Malik, Jitendra</creator><creator>Ramamoorthi, Ravi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6312-4989</orcidid></search><sort><creationdate>20170301</creationdate><title>Shape Estimation from Shading, Defocus, and Correspondence Using Light-Field Angular Coherence</title><author>Tao, Michael W. ; Srinivasan, Pratul P. ; Hadap, Sunil ; Malik, Jitendra ; Ramamoorthi, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-2e6da8753434f23169e9b5fff65c70ecf056401e0e4a0df3712e8d52dae6043a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3D reconstruction</topic><topic>Apertures</topic><topic>Cameras</topic><topic>Coherence</topic><topic>Consistency</topic><topic>Cues</topic><topic>depth cues</topic><topic>Estimation</topic><topic>Field cameras</topic><topic>Geometry</topic><topic>Image acquisition</topic><topic>Industrial applications</topic><topic>Lenses</topic><topic>Light fields</topic><topic>Lighting</topic><topic>reflection components separation</topic><topic>Shading</topic><topic>Shape</topic><topic>shape from shading</topic><topic>specular-free image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Michael W.</creatorcontrib><creatorcontrib>Srinivasan, Pratul P.</creatorcontrib><creatorcontrib>Hadap, Sunil</creatorcontrib><creatorcontrib>Malik, Jitendra</creatorcontrib><creatorcontrib>Ramamoorthi, Ravi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tao, Michael W.</au><au>Srinivasan, Pratul P.</au><au>Hadap, Sunil</au><au>Malik, Jitendra</au><au>Ramamoorthi, Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape Estimation from Shading, Defocus, and Correspondence Using Light-Field Angular Coherence</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>39</volume><issue>3</issue><spage>546</spage><epage>560</epage><pages>546-560</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Light-field cameras are quickly becoming commodity items, with consumer and industrial applications. They capture many nearby views simultaneously using a single image with a micro-lens array, thereby providing a wealth of cues for depth recovery: defocus, correspondence, and shading. In particular, apart from conventional image shading, one can refocus images after acquisition, and shift one's viewpoint within the sub-apertures of the main lens, effectively obtaining multiple views. We present a principled algorithm for dense depth estimation that combines defocus and correspondence metrics. We then extend our analysis to the additional cue of shading, using it to refine fine details in the shape. By exploiting an all-in-focus image, in which pixels are expected to exhibit angular coherence, we define an optimization framework that integrates photo consistency, depth consistency, and shading consistency. We show that combining all three sources of information: defocus, correspondence, and shading, outperforms state-of-the-art light-field depth estimation algorithms in multiple scenarios.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27101598</pmid><doi>10.1109/TPAMI.2016.2554121</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6312-4989</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2017-03, Vol.39 (3), p.546-560
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_1826672206
source IEEE Electronic Library (IEL)
subjects 3D reconstruction
Apertures
Cameras
Coherence
Consistency
Cues
depth cues
Estimation
Field cameras
Geometry
Image acquisition
Industrial applications
Lenses
Light fields
Lighting
reflection components separation
Shading
Shape
shape from shading
specular-free image
title Shape Estimation from Shading, Defocus, and Correspondence Using Light-Field Angular Coherence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20Estimation%20from%20Shading,%20Defocus,%20and%20Correspondence%20Using%20Light-Field%20Angular%20Coherence&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Tao,%20Michael%20W.&rft.date=2017-03-01&rft.volume=39&rft.issue=3&rft.spage=546&rft.epage=560&rft.pages=546-560&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2016.2554121&rft_dat=%3Cproquest_RIE%3E1866377457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1866377457&rft_id=info:pmid/27101598&rft_ieee_id=7452621&rfr_iscdi=true