Missing value imputation for physical activity data measured by accelerometer

An accelerometer, a wearable motion sensor on the hip or wrist, is becoming a popular tool in clinical and epidemiological studies for measuring the physical activity. Such data provide a series of activity counts at every minute or even more often and displays a person’s activity pattern throughout...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2018-02, Vol.27 (2), p.490-506
Hauptverfasser: Ae Lee, Jung, Gill, Jeff
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 506
container_issue 2
container_start_page 490
container_title Statistical methods in medical research
container_volume 27
creator Ae Lee, Jung
Gill, Jeff
description An accelerometer, a wearable motion sensor on the hip or wrist, is becoming a popular tool in clinical and epidemiological studies for measuring the physical activity. Such data provide a series of activity counts at every minute or even more often and displays a person’s activity pattern throughout a day. Unfortunately, the collected data can include irregular missing intervals because of noncompliance of participants and therefore make the statistical analysis more challenging. The purpose of this study is to develop a novel imputation method to handle the multivariate count data, motivated by the accelerometer data structure. We specify the predictive distribution of the missing data with a mixture of zero-inflated Poisson and Log-normal distribution, which is shown to be effective to deal with the minute-by-minute autocorrelation as well as under- and over-dispersion of count data. The imputation is performed at the minute level and follows the principles of multiple imputation using a fully conditional specification with the chained algorithm. To facilitate the practical use of this method, we provide an R package accelmissing. Our method is demonstrated using 2003−2004 National Health and Nutrition Examination Survey data.
doi_str_mv 10.1177/0962280216633248
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826671807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280216633248</sage_id><sourcerecordid>1826671807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-e7f05112095a866e88dfaca8d1f07b9ba034fa0cbd0eff80505d1e960b519e743</originalsourceid><addsrcrecordid>eNp1kL1PwzAUxC0EoqWwMyFLLCyBZzuxnREhvqRWLDBHTvJcXOWj2Eml_PekagGpEtMb7nf3TkfIJYNbxpS6g1RyroEzKYXgsT4iUxYrFYEQ8TGZbuVoq0_IWQgrAFAQp6dkwmWaxpwlU7JYuBBcs6QbU_VIXb3uO9O5tqG29XT9OQRXmIqaonMb1w20NJ2hNZrQeyxpPoxKgRX6tsYO_Tk5saYKeLG_M_Lx9Pj-8BLN355fH-7nUSFk0kWoLCSMcUgTo6VErUtrCqNLZkHlaW5AxNZAkZeA1mpIICkZphLyhKWoYjEjN7vctW-_egxdVrsw9qhMg20fMqa5lIppUCN6fYCu2t43Y7uMj4NIrWUsRgp2VOHbEDzabO1dbfyQMci2U2eHU4-Wq31wn9dY_hp-th2BaAcEs8S_r_8GfgPsjYWf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000688643</pqid></control><display><type>article</type><title>Missing value imputation for physical activity data measured by accelerometer</title><source>Access via SAGE</source><source>MEDLINE</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Ae Lee, Jung ; Gill, Jeff</creator><creatorcontrib>Ae Lee, Jung ; Gill, Jeff</creatorcontrib><description>An accelerometer, a wearable motion sensor on the hip or wrist, is becoming a popular tool in clinical and epidemiological studies for measuring the physical activity. Such data provide a series of activity counts at every minute or even more often and displays a person’s activity pattern throughout a day. Unfortunately, the collected data can include irregular missing intervals because of noncompliance of participants and therefore make the statistical analysis more challenging. The purpose of this study is to develop a novel imputation method to handle the multivariate count data, motivated by the accelerometer data structure. We specify the predictive distribution of the missing data with a mixture of zero-inflated Poisson and Log-normal distribution, which is shown to be effective to deal with the minute-by-minute autocorrelation as well as under- and over-dispersion of count data. The imputation is performed at the minute level and follows the principles of multiple imputation using a fully conditional specification with the chained algorithm. To facilitate the practical use of this method, we provide an R package accelmissing. Our method is demonstrated using 2003−2004 National Health and Nutrition Examination Survey data.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280216633248</identifier><identifier>PMID: 26994215</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Accelerometers ; Accelerometry - instrumentation ; Accelerometry - statistics &amp; numerical data ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Biostatistics ; Child ; Data Interpretation, Statistical ; Data structures ; Epidemiology ; Exercise ; Female ; Humans ; Linear Models ; Male ; Middle Aged ; Missing data ; Models, Statistical ; Monitoring, Ambulatory - instrumentation ; Monitoring, Ambulatory - statistics &amp; numerical data ; Motion sensors ; Multiple imputation ; Multivariate Analysis ; Noncompliance ; Normal distribution ; Nutrition ; Nutrition Surveys - statistics &amp; numerical data ; Physical activity ; Poisson Distribution ; Specification ; Statistical analysis ; Wearable Electronic Devices - statistics &amp; numerical data ; Wrist ; Young Adult</subject><ispartof>Statistical methods in medical research, 2018-02, Vol.27 (2), p.490-506</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-e7f05112095a866e88dfaca8d1f07b9ba034fa0cbd0eff80505d1e960b519e743</citedby><cites>FETCH-LOGICAL-c365t-e7f05112095a866e88dfaca8d1f07b9ba034fa0cbd0eff80505d1e960b519e743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280216633248$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280216633248$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,30999,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26994215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ae Lee, Jung</creatorcontrib><creatorcontrib>Gill, Jeff</creatorcontrib><title>Missing value imputation for physical activity data measured by accelerometer</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>An accelerometer, a wearable motion sensor on the hip or wrist, is becoming a popular tool in clinical and epidemiological studies for measuring the physical activity. Such data provide a series of activity counts at every minute or even more often and displays a person’s activity pattern throughout a day. Unfortunately, the collected data can include irregular missing intervals because of noncompliance of participants and therefore make the statistical analysis more challenging. The purpose of this study is to develop a novel imputation method to handle the multivariate count data, motivated by the accelerometer data structure. We specify the predictive distribution of the missing data with a mixture of zero-inflated Poisson and Log-normal distribution, which is shown to be effective to deal with the minute-by-minute autocorrelation as well as under- and over-dispersion of count data. The imputation is performed at the minute level and follows the principles of multiple imputation using a fully conditional specification with the chained algorithm. To facilitate the practical use of this method, we provide an R package accelmissing. Our method is demonstrated using 2003−2004 National Health and Nutrition Examination Survey data.</description><subject>Accelerometers</subject><subject>Accelerometry - instrumentation</subject><subject>Accelerometry - statistics &amp; numerical data</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Biostatistics</subject><subject>Child</subject><subject>Data Interpretation, Statistical</subject><subject>Data structures</subject><subject>Epidemiology</subject><subject>Exercise</subject><subject>Female</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Missing data</subject><subject>Models, Statistical</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>Monitoring, Ambulatory - statistics &amp; numerical data</subject><subject>Motion sensors</subject><subject>Multiple imputation</subject><subject>Multivariate Analysis</subject><subject>Noncompliance</subject><subject>Normal distribution</subject><subject>Nutrition</subject><subject>Nutrition Surveys - statistics &amp; numerical data</subject><subject>Physical activity</subject><subject>Poisson Distribution</subject><subject>Specification</subject><subject>Statistical analysis</subject><subject>Wearable Electronic Devices - statistics &amp; numerical data</subject><subject>Wrist</subject><subject>Young Adult</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNp1kL1PwzAUxC0EoqWwMyFLLCyBZzuxnREhvqRWLDBHTvJcXOWj2Eml_PekagGpEtMb7nf3TkfIJYNbxpS6g1RyroEzKYXgsT4iUxYrFYEQ8TGZbuVoq0_IWQgrAFAQp6dkwmWaxpwlU7JYuBBcs6QbU_VIXb3uO9O5tqG29XT9OQRXmIqaonMb1w20NJ2hNZrQeyxpPoxKgRX6tsYO_Tk5saYKeLG_M_Lx9Pj-8BLN355fH-7nUSFk0kWoLCSMcUgTo6VErUtrCqNLZkHlaW5AxNZAkZeA1mpIICkZphLyhKWoYjEjN7vctW-_egxdVrsw9qhMg20fMqa5lIppUCN6fYCu2t43Y7uMj4NIrWUsRgp2VOHbEDzabO1dbfyQMci2U2eHU4-Wq31wn9dY_hp-th2BaAcEs8S_r_8GfgPsjYWf</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Ae Lee, Jung</creator><creator>Gill, Jeff</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201802</creationdate><title>Missing value imputation for physical activity data measured by accelerometer</title><author>Ae Lee, Jung ; Gill, Jeff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-e7f05112095a866e88dfaca8d1f07b9ba034fa0cbd0eff80505d1e960b519e743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accelerometers</topic><topic>Accelerometry - instrumentation</topic><topic>Accelerometry - statistics &amp; numerical data</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Biostatistics</topic><topic>Child</topic><topic>Data Interpretation, Statistical</topic><topic>Data structures</topic><topic>Epidemiology</topic><topic>Exercise</topic><topic>Female</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Missing data</topic><topic>Models, Statistical</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>Monitoring, Ambulatory - statistics &amp; numerical data</topic><topic>Motion sensors</topic><topic>Multiple imputation</topic><topic>Multivariate Analysis</topic><topic>Noncompliance</topic><topic>Normal distribution</topic><topic>Nutrition</topic><topic>Nutrition Surveys - statistics &amp; numerical data</topic><topic>Physical activity</topic><topic>Poisson Distribution</topic><topic>Specification</topic><topic>Statistical analysis</topic><topic>Wearable Electronic Devices - statistics &amp; numerical data</topic><topic>Wrist</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ae Lee, Jung</creatorcontrib><creatorcontrib>Gill, Jeff</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ae Lee, Jung</au><au>Gill, Jeff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Missing value imputation for physical activity data measured by accelerometer</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2018-02</date><risdate>2018</risdate><volume>27</volume><issue>2</issue><spage>490</spage><epage>506</epage><pages>490-506</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>An accelerometer, a wearable motion sensor on the hip or wrist, is becoming a popular tool in clinical and epidemiological studies for measuring the physical activity. Such data provide a series of activity counts at every minute or even more often and displays a person’s activity pattern throughout a day. Unfortunately, the collected data can include irregular missing intervals because of noncompliance of participants and therefore make the statistical analysis more challenging. The purpose of this study is to develop a novel imputation method to handle the multivariate count data, motivated by the accelerometer data structure. We specify the predictive distribution of the missing data with a mixture of zero-inflated Poisson and Log-normal distribution, which is shown to be effective to deal with the minute-by-minute autocorrelation as well as under- and over-dispersion of count data. The imputation is performed at the minute level and follows the principles of multiple imputation using a fully conditional specification with the chained algorithm. To facilitate the practical use of this method, we provide an R package accelmissing. Our method is demonstrated using 2003−2004 National Health and Nutrition Examination Survey data.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>26994215</pmid><doi>10.1177/0962280216633248</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2018-02, Vol.27 (2), p.490-506
issn 0962-2802
1477-0334
language eng
recordid cdi_proquest_miscellaneous_1826671807
source Access via SAGE; MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Accelerometers
Accelerometry - instrumentation
Accelerometry - statistics & numerical data
Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Biostatistics
Child
Data Interpretation, Statistical
Data structures
Epidemiology
Exercise
Female
Humans
Linear Models
Male
Middle Aged
Missing data
Models, Statistical
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - statistics & numerical data
Motion sensors
Multiple imputation
Multivariate Analysis
Noncompliance
Normal distribution
Nutrition
Nutrition Surveys - statistics & numerical data
Physical activity
Poisson Distribution
Specification
Statistical analysis
Wearable Electronic Devices - statistics & numerical data
Wrist
Young Adult
title Missing value imputation for physical activity data measured by accelerometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Missing%20value%20imputation%20for%20physical%20activity%20data%20measured%20by%20accelerometer&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Ae%20Lee,%20Jung&rft.date=2018-02&rft.volume=27&rft.issue=2&rft.spage=490&rft.epage=506&rft.pages=490-506&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280216633248&rft_dat=%3Cproquest_cross%3E1826671807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000688643&rft_id=info:pmid/26994215&rft_sage_id=10.1177_0962280216633248&rfr_iscdi=true