Missing value imputation for physical activity data measured by accelerometer
An accelerometer, a wearable motion sensor on the hip or wrist, is becoming a popular tool in clinical and epidemiological studies for measuring the physical activity. Such data provide a series of activity counts at every minute or even more often and displays a person’s activity pattern throughout...
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2018-02, Vol.27 (2), p.490-506 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 506 |
---|---|
container_issue | 2 |
container_start_page | 490 |
container_title | Statistical methods in medical research |
container_volume | 27 |
creator | Ae Lee, Jung Gill, Jeff |
description | An accelerometer, a wearable motion sensor on the hip or wrist, is becoming a popular tool in clinical and epidemiological studies for measuring the physical activity. Such data provide a series of activity counts at every minute or even more often and displays a person’s activity pattern throughout a day. Unfortunately, the collected data can include irregular missing intervals because of noncompliance of participants and therefore make the statistical analysis more challenging. The purpose of this study is to develop a novel imputation method to handle the multivariate count data, motivated by the accelerometer data structure. We specify the predictive distribution of the missing data with a mixture of zero-inflated Poisson and Log-normal distribution, which is shown to be effective to deal with the minute-by-minute autocorrelation as well as under- and over-dispersion of count data. The imputation is performed at the minute level and follows the principles of multiple imputation using a fully conditional specification with the chained algorithm. To facilitate the practical use of this method, we provide an R package accelmissing. Our method is demonstrated using 2003−2004 National Health and Nutrition Examination Survey data. |
doi_str_mv | 10.1177/0962280216633248 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826671807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280216633248</sage_id><sourcerecordid>1826671807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-e7f05112095a866e88dfaca8d1f07b9ba034fa0cbd0eff80505d1e960b519e743</originalsourceid><addsrcrecordid>eNp1kL1PwzAUxC0EoqWwMyFLLCyBZzuxnREhvqRWLDBHTvJcXOWj2Eml_PekagGpEtMb7nf3TkfIJYNbxpS6g1RyroEzKYXgsT4iUxYrFYEQ8TGZbuVoq0_IWQgrAFAQp6dkwmWaxpwlU7JYuBBcs6QbU_VIXb3uO9O5tqG29XT9OQRXmIqaonMb1w20NJ2hNZrQeyxpPoxKgRX6tsYO_Tk5saYKeLG_M_Lx9Pj-8BLN355fH-7nUSFk0kWoLCSMcUgTo6VErUtrCqNLZkHlaW5AxNZAkZeA1mpIICkZphLyhKWoYjEjN7vctW-_egxdVrsw9qhMg20fMqa5lIppUCN6fYCu2t43Y7uMj4NIrWUsRgp2VOHbEDzabO1dbfyQMci2U2eHU4-Wq31wn9dY_hp-th2BaAcEs8S_r_8GfgPsjYWf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000688643</pqid></control><display><type>article</type><title>Missing value imputation for physical activity data measured by accelerometer</title><source>Access via SAGE</source><source>MEDLINE</source><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><creator>Ae Lee, Jung ; Gill, Jeff</creator><creatorcontrib>Ae Lee, Jung ; Gill, Jeff</creatorcontrib><description>An accelerometer, a wearable motion sensor on the hip or wrist, is becoming a popular tool in clinical and epidemiological studies for measuring the physical activity. Such data provide a series of activity counts at every minute or even more often and displays a person’s activity pattern throughout a day. Unfortunately, the collected data can include irregular missing intervals because of noncompliance of participants and therefore make the statistical analysis more challenging. The purpose of this study is to develop a novel imputation method to handle the multivariate count data, motivated by the accelerometer data structure. We specify the predictive distribution of the missing data with a mixture of zero-inflated Poisson and Log-normal distribution, which is shown to be effective to deal with the minute-by-minute autocorrelation as well as under- and over-dispersion of count data. The imputation is performed at the minute level and follows the principles of multiple imputation using a fully conditional specification with the chained algorithm. To facilitate the practical use of this method, we provide an R package accelmissing. Our method is demonstrated using 2003−2004 National Health and Nutrition Examination Survey data.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280216633248</identifier><identifier>PMID: 26994215</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Accelerometers ; Accelerometry - instrumentation ; Accelerometry - statistics & numerical data ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Biostatistics ; Child ; Data Interpretation, Statistical ; Data structures ; Epidemiology ; Exercise ; Female ; Humans ; Linear Models ; Male ; Middle Aged ; Missing data ; Models, Statistical ; Monitoring, Ambulatory - instrumentation ; Monitoring, Ambulatory - statistics & numerical data ; Motion sensors ; Multiple imputation ; Multivariate Analysis ; Noncompliance ; Normal distribution ; Nutrition ; Nutrition Surveys - statistics & numerical data ; Physical activity ; Poisson Distribution ; Specification ; Statistical analysis ; Wearable Electronic Devices - statistics & numerical data ; Wrist ; Young Adult</subject><ispartof>Statistical methods in medical research, 2018-02, Vol.27 (2), p.490-506</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-e7f05112095a866e88dfaca8d1f07b9ba034fa0cbd0eff80505d1e960b519e743</citedby><cites>FETCH-LOGICAL-c365t-e7f05112095a866e88dfaca8d1f07b9ba034fa0cbd0eff80505d1e960b519e743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280216633248$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280216633248$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,30999,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26994215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ae Lee, Jung</creatorcontrib><creatorcontrib>Gill, Jeff</creatorcontrib><title>Missing value imputation for physical activity data measured by accelerometer</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>An accelerometer, a wearable motion sensor on the hip or wrist, is becoming a popular tool in clinical and epidemiological studies for measuring the physical activity. Such data provide a series of activity counts at every minute or even more often and displays a person’s activity pattern throughout a day. Unfortunately, the collected data can include irregular missing intervals because of noncompliance of participants and therefore make the statistical analysis more challenging. The purpose of this study is to develop a novel imputation method to handle the multivariate count data, motivated by the accelerometer data structure. We specify the predictive distribution of the missing data with a mixture of zero-inflated Poisson and Log-normal distribution, which is shown to be effective to deal with the minute-by-minute autocorrelation as well as under- and over-dispersion of count data. The imputation is performed at the minute level and follows the principles of multiple imputation using a fully conditional specification with the chained algorithm. To facilitate the practical use of this method, we provide an R package accelmissing. Our method is demonstrated using 2003−2004 National Health and Nutrition Examination Survey data.</description><subject>Accelerometers</subject><subject>Accelerometry - instrumentation</subject><subject>Accelerometry - statistics & numerical data</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Biostatistics</subject><subject>Child</subject><subject>Data Interpretation, Statistical</subject><subject>Data structures</subject><subject>Epidemiology</subject><subject>Exercise</subject><subject>Female</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Missing data</subject><subject>Models, Statistical</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>Monitoring, Ambulatory - statistics & numerical data</subject><subject>Motion sensors</subject><subject>Multiple imputation</subject><subject>Multivariate Analysis</subject><subject>Noncompliance</subject><subject>Normal distribution</subject><subject>Nutrition</subject><subject>Nutrition Surveys - statistics & numerical data</subject><subject>Physical activity</subject><subject>Poisson Distribution</subject><subject>Specification</subject><subject>Statistical analysis</subject><subject>Wearable Electronic Devices - statistics & numerical data</subject><subject>Wrist</subject><subject>Young Adult</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNp1kL1PwzAUxC0EoqWwMyFLLCyBZzuxnREhvqRWLDBHTvJcXOWj2Eml_PekagGpEtMb7nf3TkfIJYNbxpS6g1RyroEzKYXgsT4iUxYrFYEQ8TGZbuVoq0_IWQgrAFAQp6dkwmWaxpwlU7JYuBBcs6QbU_VIXb3uO9O5tqG29XT9OQRXmIqaonMb1w20NJ2hNZrQeyxpPoxKgRX6tsYO_Tk5saYKeLG_M_Lx9Pj-8BLN355fH-7nUSFk0kWoLCSMcUgTo6VErUtrCqNLZkHlaW5AxNZAkZeA1mpIICkZphLyhKWoYjEjN7vctW-_egxdVrsw9qhMg20fMqa5lIppUCN6fYCu2t43Y7uMj4NIrWUsRgp2VOHbEDzabO1dbfyQMci2U2eHU4-Wq31wn9dY_hp-th2BaAcEs8S_r_8GfgPsjYWf</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Ae Lee, Jung</creator><creator>Gill, Jeff</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201802</creationdate><title>Missing value imputation for physical activity data measured by accelerometer</title><author>Ae Lee, Jung ; Gill, Jeff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-e7f05112095a866e88dfaca8d1f07b9ba034fa0cbd0eff80505d1e960b519e743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accelerometers</topic><topic>Accelerometry - instrumentation</topic><topic>Accelerometry - statistics & numerical data</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Biostatistics</topic><topic>Child</topic><topic>Data Interpretation, Statistical</topic><topic>Data structures</topic><topic>Epidemiology</topic><topic>Exercise</topic><topic>Female</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Missing data</topic><topic>Models, Statistical</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>Monitoring, Ambulatory - statistics & numerical data</topic><topic>Motion sensors</topic><topic>Multiple imputation</topic><topic>Multivariate Analysis</topic><topic>Noncompliance</topic><topic>Normal distribution</topic><topic>Nutrition</topic><topic>Nutrition Surveys - statistics & numerical data</topic><topic>Physical activity</topic><topic>Poisson Distribution</topic><topic>Specification</topic><topic>Statistical analysis</topic><topic>Wearable Electronic Devices - statistics & numerical data</topic><topic>Wrist</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ae Lee, Jung</creatorcontrib><creatorcontrib>Gill, Jeff</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ae Lee, Jung</au><au>Gill, Jeff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Missing value imputation for physical activity data measured by accelerometer</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2018-02</date><risdate>2018</risdate><volume>27</volume><issue>2</issue><spage>490</spage><epage>506</epage><pages>490-506</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>An accelerometer, a wearable motion sensor on the hip or wrist, is becoming a popular tool in clinical and epidemiological studies for measuring the physical activity. Such data provide a series of activity counts at every minute or even more often and displays a person’s activity pattern throughout a day. Unfortunately, the collected data can include irregular missing intervals because of noncompliance of participants and therefore make the statistical analysis more challenging. The purpose of this study is to develop a novel imputation method to handle the multivariate count data, motivated by the accelerometer data structure. We specify the predictive distribution of the missing data with a mixture of zero-inflated Poisson and Log-normal distribution, which is shown to be effective to deal with the minute-by-minute autocorrelation as well as under- and over-dispersion of count data. The imputation is performed at the minute level and follows the principles of multiple imputation using a fully conditional specification with the chained algorithm. To facilitate the practical use of this method, we provide an R package accelmissing. Our method is demonstrated using 2003−2004 National Health and Nutrition Examination Survey data.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>26994215</pmid><doi>10.1177/0962280216633248</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2018-02, Vol.27 (2), p.490-506 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826671807 |
source | Access via SAGE; MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA) |
subjects | Accelerometers Accelerometry - instrumentation Accelerometry - statistics & numerical data Adolescent Adult Aged Aged, 80 and over Algorithms Biostatistics Child Data Interpretation, Statistical Data structures Epidemiology Exercise Female Humans Linear Models Male Middle Aged Missing data Models, Statistical Monitoring, Ambulatory - instrumentation Monitoring, Ambulatory - statistics & numerical data Motion sensors Multiple imputation Multivariate Analysis Noncompliance Normal distribution Nutrition Nutrition Surveys - statistics & numerical data Physical activity Poisson Distribution Specification Statistical analysis Wearable Electronic Devices - statistics & numerical data Wrist Young Adult |
title | Missing value imputation for physical activity data measured by accelerometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Missing%20value%20imputation%20for%20physical%20activity%20data%20measured%20by%20accelerometer&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Ae%20Lee,%20Jung&rft.date=2018-02&rft.volume=27&rft.issue=2&rft.spage=490&rft.epage=506&rft.pages=490-506&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280216633248&rft_dat=%3Cproquest_cross%3E1826671807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000688643&rft_id=info:pmid/26994215&rft_sage_id=10.1177_0962280216633248&rfr_iscdi=true |