Short-Term Ketamine Treatment Decreases Oxidative Stress Without Influencing TRPM2 and TRPV1 Channel Gating in the Hippocampus and Dorsal Root Ganglion of Rats

Calcium ions (Ca 2+ ) are important second messengers in neurons. Ketamine (KETAM) is an anesthetic and analgesic, with psychotomimetic effects and abuse potential. KETAM modulates the entry of Ca 2+ in neurons through glutamate receptors, but its effect on transient receptor potential melastatin 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular neurobiology 2017, Vol.37 (1), p.133-144
Hauptverfasser: Demirdaş, Arif, Nazıroğlu, Mustafa, Övey, Ishak Suat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 133
container_title Cellular and molecular neurobiology
container_volume 37
creator Demirdaş, Arif
Nazıroğlu, Mustafa
Övey, Ishak Suat
description Calcium ions (Ca 2+ ) are important second messengers in neurons. Ketamine (KETAM) is an anesthetic and analgesic, with psychotomimetic effects and abuse potential. KETAM modulates the entry of Ca 2+ in neurons through glutamate receptors, but its effect on transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels has not been clarified. This study investigated the short-term effects of KETAM on oxidative stress and TRPM2 and TRPV1 channel gating in hippocampal and dorsal root ganglion (DRG) neurons of rats. Freshly isolated hippocampal and DRG neurons were incubated for 24 h with KETAM (0.3 mM). The TRPM2 channel antagonist, N -( p -amylcinnamoyl)anthranilic acid (ACA), inhibited cumene hydroperoxide and ADP-ribose-induced TRPM2 currents in the neurons, and capsazepine (CPZ) inhibited capsaicin-induced TRPV1 currents. The TRPM2 and TRPV1 channel current densities and intracellular free calcium ion concentration of the neurons were lower in the neurons exposed to ACA and CPZ compared to the control neurons, respectively. However, the values were not further decreased by the KETAM + CPZ and KETAM + ACA treatments. KETAM decreased lipid peroxidation levels in the neurons but increased glutathione peroxidase activity. In conclusion, short-term KETAM treatment decreased oxidative stress levels but did not seem to influence TRPM2- and TRPV1-mediated Ca 2+ entry.
doi_str_mv 10.1007/s10571-016-0353-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826664421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880800049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-3147488e88af36cc953aca7c3710651db03a4b84a00b83b7072c53ab9b2af4e13</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EokPhAdggS2y6Cb3-SeIs0ZT-qEVF0wGWkeO5mXGV2MF2EDwNr4qHKQghsbpXOt851_Ih5CWDNwygPo0MypoVwKoCRCkK-YgsWFmLolICHpMF8JoXUkg4Is9ivAeABqB8So541YgSKrEgP-52PqRijWGk15j0aB3SdUCdRnSJnqHJe8RIb7_ZjU72K9K7FDBG-tmmnZ8TvXL9MKMz1m3pevXhPafabfbbJ0aXO-0cDvQiO7NsHU07pJd2mrzR4zTHX-yZD1EPdOV9yqTbDtY76nu60ik-J096PUR88TCPycfzd-vlZXFze3G1fHtTGFHzVAgma6kUKqV7URnTlEIbXWeRQVWyTQdCy05JDdAp0dVQc5ORrum47iUycUxODrlT8F9mjKkdbTQ4DNqhn2PLFK-qSkq-R1__g977Obj8ukwpUPmbZZMpdqBM8DEG7Nsp2FGH7y2Ddt9ee2ivze21-_ZamT2vHpLnbsTNH8fvujLAD0DMktti-Ov0f1N_Aow3pKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880800049</pqid></control><display><type>article</type><title>Short-Term Ketamine Treatment Decreases Oxidative Stress Without Influencing TRPM2 and TRPV1 Channel Gating in the Hippocampus and Dorsal Root Ganglion of Rats</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Demirdaş, Arif ; Nazıroğlu, Mustafa ; Övey, Ishak Suat</creator><creatorcontrib>Demirdaş, Arif ; Nazıroğlu, Mustafa ; Övey, Ishak Suat</creatorcontrib><description>Calcium ions (Ca 2+ ) are important second messengers in neurons. Ketamine (KETAM) is an anesthetic and analgesic, with psychotomimetic effects and abuse potential. KETAM modulates the entry of Ca 2+ in neurons through glutamate receptors, but its effect on transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels has not been clarified. This study investigated the short-term effects of KETAM on oxidative stress and TRPM2 and TRPV1 channel gating in hippocampal and dorsal root ganglion (DRG) neurons of rats. Freshly isolated hippocampal and DRG neurons were incubated for 24 h with KETAM (0.3 mM). The TRPM2 channel antagonist, N -( p -amylcinnamoyl)anthranilic acid (ACA), inhibited cumene hydroperoxide and ADP-ribose-induced TRPM2 currents in the neurons, and capsazepine (CPZ) inhibited capsaicin-induced TRPV1 currents. The TRPM2 and TRPV1 channel current densities and intracellular free calcium ion concentration of the neurons were lower in the neurons exposed to ACA and CPZ compared to the control neurons, respectively. However, the values were not further decreased by the KETAM + CPZ and KETAM + ACA treatments. KETAM decreased lipid peroxidation levels in the neurons but increased glutathione peroxidase activity. In conclusion, short-term KETAM treatment decreased oxidative stress levels but did not seem to influence TRPM2- and TRPV1-mediated Ca 2+ entry.</description><identifier>ISSN: 0272-4340</identifier><identifier>ISSN: 1573-6830</identifier><identifier>EISSN: 1573-6830</identifier><identifier>DOI: 10.1007/s10571-016-0353-4</identifier><identifier>PMID: 26935063</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analgesics - administration &amp; dosage ; Animals ; Anthranilic acid ; Biomedical and Life Sciences ; Biomedicine ; Calcium (intracellular) ; Calcium influx ; Calcium Signaling - drug effects ; Calcium Signaling - physiology ; Capsaicin ; Capsaicin receptors ; Capsazepine ; Cell Biology ; Channel gating ; Cumene hydroperoxide ; Dorsal root ganglia ; Drug abuse ; Drug Administration Schedule ; Ganglia, Spinal - drug effects ; Ganglia, Spinal - metabolism ; Glutamic acid receptors ; Glutathione peroxidase ; Hippocampus ; Hippocampus - drug effects ; Hippocampus - metabolism ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Ketamine ; Ketamine - administration &amp; dosage ; Lipid peroxidation ; Male ; Neurobiology ; Neurons ; Neurosciences ; Original Research ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidative Stress - physiology ; Rats ; Rats, Wistar ; Ribose ; Rodents ; Second messengers ; Short term ; Transient receptor potential proteins ; Treatment Outcome ; TRPM Cation Channels - metabolism ; TRPV Cation Channels - metabolism</subject><ispartof>Cellular and molecular neurobiology, 2017, Vol.37 (1), p.133-144</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-3147488e88af36cc953aca7c3710651db03a4b84a00b83b7072c53ab9b2af4e13</citedby><cites>FETCH-LOGICAL-c372t-3147488e88af36cc953aca7c3710651db03a4b84a00b83b7072c53ab9b2af4e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10571-016-0353-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10571-016-0353-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26935063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demirdaş, Arif</creatorcontrib><creatorcontrib>Nazıroğlu, Mustafa</creatorcontrib><creatorcontrib>Övey, Ishak Suat</creatorcontrib><title>Short-Term Ketamine Treatment Decreases Oxidative Stress Without Influencing TRPM2 and TRPV1 Channel Gating in the Hippocampus and Dorsal Root Ganglion of Rats</title><title>Cellular and molecular neurobiology</title><addtitle>Cell Mol Neurobiol</addtitle><addtitle>Cell Mol Neurobiol</addtitle><description>Calcium ions (Ca 2+ ) are important second messengers in neurons. Ketamine (KETAM) is an anesthetic and analgesic, with psychotomimetic effects and abuse potential. KETAM modulates the entry of Ca 2+ in neurons through glutamate receptors, but its effect on transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels has not been clarified. This study investigated the short-term effects of KETAM on oxidative stress and TRPM2 and TRPV1 channel gating in hippocampal and dorsal root ganglion (DRG) neurons of rats. Freshly isolated hippocampal and DRG neurons were incubated for 24 h with KETAM (0.3 mM). The TRPM2 channel antagonist, N -( p -amylcinnamoyl)anthranilic acid (ACA), inhibited cumene hydroperoxide and ADP-ribose-induced TRPM2 currents in the neurons, and capsazepine (CPZ) inhibited capsaicin-induced TRPV1 currents. The TRPM2 and TRPV1 channel current densities and intracellular free calcium ion concentration of the neurons were lower in the neurons exposed to ACA and CPZ compared to the control neurons, respectively. However, the values were not further decreased by the KETAM + CPZ and KETAM + ACA treatments. KETAM decreased lipid peroxidation levels in the neurons but increased glutathione peroxidase activity. In conclusion, short-term KETAM treatment decreased oxidative stress levels but did not seem to influence TRPM2- and TRPV1-mediated Ca 2+ entry.</description><subject>Analgesics - administration &amp; dosage</subject><subject>Animals</subject><subject>Anthranilic acid</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium (intracellular)</subject><subject>Calcium influx</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - physiology</subject><subject>Capsaicin</subject><subject>Capsaicin receptors</subject><subject>Capsazepine</subject><subject>Cell Biology</subject><subject>Channel gating</subject><subject>Cumene hydroperoxide</subject><subject>Dorsal root ganglia</subject><subject>Drug abuse</subject><subject>Drug Administration Schedule</subject><subject>Ganglia, Spinal - drug effects</subject><subject>Ganglia, Spinal - metabolism</subject><subject>Glutamic acid receptors</subject><subject>Glutathione peroxidase</subject><subject>Hippocampus</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Ketamine</subject><subject>Ketamine - administration &amp; dosage</subject><subject>Lipid peroxidation</subject><subject>Male</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Original Research</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Ribose</subject><subject>Rodents</subject><subject>Second messengers</subject><subject>Short term</subject><subject>Transient receptor potential proteins</subject><subject>Treatment Outcome</subject><subject>TRPM Cation Channels - metabolism</subject><subject>TRPV Cation Channels - metabolism</subject><issn>0272-4340</issn><issn>1573-6830</issn><issn>1573-6830</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAUhS0EokPhAdggS2y6Cb3-SeIs0ZT-qEVF0wGWkeO5mXGV2MF2EDwNr4qHKQghsbpXOt851_Ih5CWDNwygPo0MypoVwKoCRCkK-YgsWFmLolICHpMF8JoXUkg4Is9ivAeABqB8So541YgSKrEgP-52PqRijWGk15j0aB3SdUCdRnSJnqHJe8RIb7_ZjU72K9K7FDBG-tmmnZ8TvXL9MKMz1m3pevXhPafabfbbJ0aXO-0cDvQiO7NsHU07pJd2mrzR4zTHX-yZD1EPdOV9yqTbDtY76nu60ik-J096PUR88TCPycfzd-vlZXFze3G1fHtTGFHzVAgma6kUKqV7URnTlEIbXWeRQVWyTQdCy05JDdAp0dVQc5ORrum47iUycUxODrlT8F9mjKkdbTQ4DNqhn2PLFK-qSkq-R1__g977Obj8ukwpUPmbZZMpdqBM8DEG7Nsp2FGH7y2Ddt9ee2ivze21-_ZamT2vHpLnbsTNH8fvujLAD0DMktti-Ov0f1N_Aow3pKU</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Demirdaş, Arif</creator><creator>Nazıroğlu, Mustafa</creator><creator>Övey, Ishak Suat</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2017</creationdate><title>Short-Term Ketamine Treatment Decreases Oxidative Stress Without Influencing TRPM2 and TRPV1 Channel Gating in the Hippocampus and Dorsal Root Ganglion of Rats</title><author>Demirdaş, Arif ; Nazıroğlu, Mustafa ; Övey, Ishak Suat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-3147488e88af36cc953aca7c3710651db03a4b84a00b83b7072c53ab9b2af4e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analgesics - administration &amp; dosage</topic><topic>Animals</topic><topic>Anthranilic acid</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium (intracellular)</topic><topic>Calcium influx</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - physiology</topic><topic>Capsaicin</topic><topic>Capsaicin receptors</topic><topic>Capsazepine</topic><topic>Cell Biology</topic><topic>Channel gating</topic><topic>Cumene hydroperoxide</topic><topic>Dorsal root ganglia</topic><topic>Drug abuse</topic><topic>Drug Administration Schedule</topic><topic>Ganglia, Spinal - drug effects</topic><topic>Ganglia, Spinal - metabolism</topic><topic>Glutamic acid receptors</topic><topic>Glutathione peroxidase</topic><topic>Hippocampus</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Ketamine</topic><topic>Ketamine - administration &amp; dosage</topic><topic>Lipid peroxidation</topic><topic>Male</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Original Research</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Ribose</topic><topic>Rodents</topic><topic>Second messengers</topic><topic>Short term</topic><topic>Transient receptor potential proteins</topic><topic>Treatment Outcome</topic><topic>TRPM Cation Channels - metabolism</topic><topic>TRPV Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demirdaş, Arif</creatorcontrib><creatorcontrib>Nazıroğlu, Mustafa</creatorcontrib><creatorcontrib>Övey, Ishak Suat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cellular and molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demirdaş, Arif</au><au>Nazıroğlu, Mustafa</au><au>Övey, Ishak Suat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Ketamine Treatment Decreases Oxidative Stress Without Influencing TRPM2 and TRPV1 Channel Gating in the Hippocampus and Dorsal Root Ganglion of Rats</atitle><jtitle>Cellular and molecular neurobiology</jtitle><stitle>Cell Mol Neurobiol</stitle><addtitle>Cell Mol Neurobiol</addtitle><date>2017</date><risdate>2017</risdate><volume>37</volume><issue>1</issue><spage>133</spage><epage>144</epage><pages>133-144</pages><issn>0272-4340</issn><issn>1573-6830</issn><eissn>1573-6830</eissn><abstract>Calcium ions (Ca 2+ ) are important second messengers in neurons. Ketamine (KETAM) is an anesthetic and analgesic, with psychotomimetic effects and abuse potential. KETAM modulates the entry of Ca 2+ in neurons through glutamate receptors, but its effect on transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels has not been clarified. This study investigated the short-term effects of KETAM on oxidative stress and TRPM2 and TRPV1 channel gating in hippocampal and dorsal root ganglion (DRG) neurons of rats. Freshly isolated hippocampal and DRG neurons were incubated for 24 h with KETAM (0.3 mM). The TRPM2 channel antagonist, N -( p -amylcinnamoyl)anthranilic acid (ACA), inhibited cumene hydroperoxide and ADP-ribose-induced TRPM2 currents in the neurons, and capsazepine (CPZ) inhibited capsaicin-induced TRPV1 currents. The TRPM2 and TRPV1 channel current densities and intracellular free calcium ion concentration of the neurons were lower in the neurons exposed to ACA and CPZ compared to the control neurons, respectively. However, the values were not further decreased by the KETAM + CPZ and KETAM + ACA treatments. KETAM decreased lipid peroxidation levels in the neurons but increased glutathione peroxidase activity. In conclusion, short-term KETAM treatment decreased oxidative stress levels but did not seem to influence TRPM2- and TRPV1-mediated Ca 2+ entry.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26935063</pmid><doi>10.1007/s10571-016-0353-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4340
ispartof Cellular and molecular neurobiology, 2017, Vol.37 (1), p.133-144
issn 0272-4340
1573-6830
1573-6830
language eng
recordid cdi_proquest_miscellaneous_1826664421
source MEDLINE; SpringerNature Journals
subjects Analgesics - administration & dosage
Animals
Anthranilic acid
Biomedical and Life Sciences
Biomedicine
Calcium (intracellular)
Calcium influx
Calcium Signaling - drug effects
Calcium Signaling - physiology
Capsaicin
Capsaicin receptors
Capsazepine
Cell Biology
Channel gating
Cumene hydroperoxide
Dorsal root ganglia
Drug abuse
Drug Administration Schedule
Ganglia, Spinal - drug effects
Ganglia, Spinal - metabolism
Glutamic acid receptors
Glutathione peroxidase
Hippocampus
Hippocampus - drug effects
Hippocampus - metabolism
Ion Channel Gating - drug effects
Ion Channel Gating - physiology
Ketamine
Ketamine - administration & dosage
Lipid peroxidation
Male
Neurobiology
Neurons
Neurosciences
Original Research
Oxidative stress
Oxidative Stress - drug effects
Oxidative Stress - physiology
Rats
Rats, Wistar
Ribose
Rodents
Second messengers
Short term
Transient receptor potential proteins
Treatment Outcome
TRPM Cation Channels - metabolism
TRPV Cation Channels - metabolism
title Short-Term Ketamine Treatment Decreases Oxidative Stress Without Influencing TRPM2 and TRPV1 Channel Gating in the Hippocampus and Dorsal Root Ganglion of Rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Ketamine%20Treatment%20Decreases%20Oxidative%20Stress%20Without%20Influencing%20TRPM2%20and%20TRPV1%20Channel%20Gating%20in%20the%20Hippocampus%20and%20Dorsal%20Root%20Ganglion%20of%20Rats&rft.jtitle=Cellular%20and%20molecular%20neurobiology&rft.au=Demirda%C5%9F,%20Arif&rft.date=2017&rft.volume=37&rft.issue=1&rft.spage=133&rft.epage=144&rft.pages=133-144&rft.issn=0272-4340&rft.eissn=1573-6830&rft_id=info:doi/10.1007/s10571-016-0353-4&rft_dat=%3Cproquest_cross%3E1880800049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880800049&rft_id=info:pmid/26935063&rfr_iscdi=true