In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone)

Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2017-08, Vol.105 (6), p.1369-1378
Hauptverfasser: Wang, Bing, Dong, Jun, Niu, Lijing, Chen, Wenyan, Chen, Dongliang, Shen, Chengyi, Zhu, Jiang, Zhang, Xiaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1378
container_issue 6
container_start_page 1369
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 105
creator Wang, Bing
Dong, Jun
Niu, Lijing
Chen, Wenyan
Chen, Dongliang
Shen, Chengyi
Zhu, Jiang
Zhang, Xiaoming
description Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were investigated in detail. The morphological analysis of these membranes revealed the main degradation conditions of PDPA membranes. The weight remaining and molecular weight variation showed that the overall degradation rate of the membranes could be adjusted by modulating the molecular structure of the PDPAs. Especially, α-chymotrypsin could catalyze the degradation process of PDPAs. Based on these results, the in vitro degradation mechanism was demonstrated, and confirmed by H NMR of the hydrolysis products. Finally, the in vivo degradation and biocompatibility of different PDPAs were investigated. The kinetic study showed that the in vitro and in vivo molecular weight loss of PDPAs have the first-order characteristics. The in vivo degradation rate of the most Phe-containing PDPA-3 is the slowest, and this result relates to the biocompatibilities of PDPAs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1369-1378, 2017.
doi_str_mv 10.1002/jbm.b.33669
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826663522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917931692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-df65d708e5a9a02399f609d06e42b05a1898eb800edc9e3480c73c00830bd7a43</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0Eoh9w4o4scdkKZfFH4sS9oaqFSpW4wNkaxxPqVWIHO6nY_8KPxdstPXDyeOaZV6_mJeQdZ1vOmPi0s9PWbqVUSr8gp7xpRFXrjr98rlt5Qs5y3hVYsUa-JieiZUoI3Z6SP7eBPvglRQrBUX_4PETq8GcCB4uPgcaBznHBsHgYC7T4Ctw95sNoggVTaedLej1iX1TyvJY2TjZBwHzcHfcbzAWsYPIOL6iFjI6W9bGa7zHsRxgh-ICPDuZq43z8DSEGvHhDXg1FHd8-vefkx83196uv1d23L7dXn--qXjb1UrlBNa5lHTaggQmp9aCYdkxhLSxrgHe6Q9sxhq7XKOuO9a3sGesks66FWp6TzVF3TvHXWsyayecex-IL45oN74RSSjZCFPTDf-gurikUd4Zr3mrJlT5QH49UX06SEw5mTn6CtDecmUNopoRmrHkMrdDvnzRXO6F7Zv-lJP8CcvmT-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917931692</pqid></control><display><type>article</type><title>In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone)</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><creator>Wang, Bing ; Dong, Jun ; Niu, Lijing ; Chen, Wenyan ; Chen, Dongliang ; Shen, Chengyi ; Zhu, Jiang ; Zhang, Xiaoming</creator><creatorcontrib>Wang, Bing ; Dong, Jun ; Niu, Lijing ; Chen, Wenyan ; Chen, Dongliang ; Shen, Chengyi ; Zhu, Jiang ; Zhang, Xiaoming</creatorcontrib><description>Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were investigated in detail. The morphological analysis of these membranes revealed the main degradation conditions of PDPA membranes. The weight remaining and molecular weight variation showed that the overall degradation rate of the membranes could be adjusted by modulating the molecular structure of the PDPAs. Especially, α-chymotrypsin could catalyze the degradation process of PDPAs. Based on these results, the in vitro degradation mechanism was demonstrated, and confirmed by H NMR of the hydrolysis products. Finally, the in vivo degradation and biocompatibility of different PDPAs were investigated. The kinetic study showed that the in vitro and in vivo molecular weight loss of PDPAs have the first-order characteristics. The in vivo degradation rate of the most Phe-containing PDPA-3 is the slowest, and this result relates to the biocompatibilities of PDPAs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1369-1378, 2017.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.33669</identifier><identifier>PMID: 27062297</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Absorbable Implants ; Adhesion ; Animals ; Biocompatibility ; Biomedical materials ; Chymotrypsin ; Degradation ; Electrospinning ; Hydrolysis ; In vitro methods and tests ; In vivo methods and tests ; Materials research ; Materials science ; Materials Testing ; Membranes ; Membranes, Artificial ; Molecular structure ; Molecular weight ; NMR ; Nuclear magnetic resonance ; Phenylalanine ; Phenylalanine - chemistry ; Polyesteramides ; Polyesters - chemistry ; Rats ; Rats, Sprague-Dawley ; Tissue Adhesions - metabolism ; Tissue Adhesions - prevention &amp; control ; Weight loss</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2017-08, Vol.105 (6), p.1369-1378</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-df65d708e5a9a02399f609d06e42b05a1898eb800edc9e3480c73c00830bd7a43</citedby><cites>FETCH-LOGICAL-c354t-df65d708e5a9a02399f609d06e42b05a1898eb800edc9e3480c73c00830bd7a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27062297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Dong, Jun</creatorcontrib><creatorcontrib>Niu, Lijing</creatorcontrib><creatorcontrib>Chen, Wenyan</creatorcontrib><creatorcontrib>Chen, Dongliang</creatorcontrib><creatorcontrib>Shen, Chengyi</creatorcontrib><creatorcontrib>Zhu, Jiang</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><title>In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone)</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were investigated in detail. The morphological analysis of these membranes revealed the main degradation conditions of PDPA membranes. The weight remaining and molecular weight variation showed that the overall degradation rate of the membranes could be adjusted by modulating the molecular structure of the PDPAs. Especially, α-chymotrypsin could catalyze the degradation process of PDPAs. Based on these results, the in vitro degradation mechanism was demonstrated, and confirmed by H NMR of the hydrolysis products. Finally, the in vivo degradation and biocompatibility of different PDPAs were investigated. The kinetic study showed that the in vitro and in vivo molecular weight loss of PDPAs have the first-order characteristics. The in vivo degradation rate of the most Phe-containing PDPA-3 is the slowest, and this result relates to the biocompatibilities of PDPAs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1369-1378, 2017.</description><subject>Absorbable Implants</subject><subject>Adhesion</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Chymotrypsin</subject><subject>Degradation</subject><subject>Electrospinning</subject><subject>Hydrolysis</subject><subject>In vitro methods and tests</subject><subject>In vivo methods and tests</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Molecular structure</subject><subject>Molecular weight</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phenylalanine</subject><subject>Phenylalanine - chemistry</subject><subject>Polyesteramides</subject><subject>Polyesters - chemistry</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Tissue Adhesions - metabolism</subject><subject>Tissue Adhesions - prevention &amp; control</subject><subject>Weight loss</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0Eoh9w4o4scdkKZfFH4sS9oaqFSpW4wNkaxxPqVWIHO6nY_8KPxdstPXDyeOaZV6_mJeQdZ1vOmPi0s9PWbqVUSr8gp7xpRFXrjr98rlt5Qs5y3hVYsUa-JieiZUoI3Z6SP7eBPvglRQrBUX_4PETq8GcCB4uPgcaBznHBsHgYC7T4Ctw95sNoggVTaedLej1iX1TyvJY2TjZBwHzcHfcbzAWsYPIOL6iFjI6W9bGa7zHsRxgh-ICPDuZq43z8DSEGvHhDXg1FHd8-vefkx83196uv1d23L7dXn--qXjb1UrlBNa5lHTaggQmp9aCYdkxhLSxrgHe6Q9sxhq7XKOuO9a3sGesks66FWp6TzVF3TvHXWsyayecex-IL45oN74RSSjZCFPTDf-gurikUd4Zr3mrJlT5QH49UX06SEw5mTn6CtDecmUNopoRmrHkMrdDvnzRXO6F7Zv-lJP8CcvmT-g</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Wang, Bing</creator><creator>Dong, Jun</creator><creator>Niu, Lijing</creator><creator>Chen, Wenyan</creator><creator>Chen, Dongliang</creator><creator>Shen, Chengyi</creator><creator>Zhu, Jiang</creator><creator>Zhang, Xiaoming</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170801</creationdate><title>In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone)</title><author>Wang, Bing ; Dong, Jun ; Niu, Lijing ; Chen, Wenyan ; Chen, Dongliang ; Shen, Chengyi ; Zhu, Jiang ; Zhang, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-df65d708e5a9a02399f609d06e42b05a1898eb800edc9e3480c73c00830bd7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorbable Implants</topic><topic>Adhesion</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Chymotrypsin</topic><topic>Degradation</topic><topic>Electrospinning</topic><topic>Hydrolysis</topic><topic>In vitro methods and tests</topic><topic>In vivo methods and tests</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Molecular structure</topic><topic>Molecular weight</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phenylalanine</topic><topic>Phenylalanine - chemistry</topic><topic>Polyesteramides</topic><topic>Polyesters - chemistry</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Tissue Adhesions - metabolism</topic><topic>Tissue Adhesions - prevention &amp; control</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Dong, Jun</creatorcontrib><creatorcontrib>Niu, Lijing</creatorcontrib><creatorcontrib>Chen, Wenyan</creatorcontrib><creatorcontrib>Chen, Dongliang</creatorcontrib><creatorcontrib>Shen, Chengyi</creatorcontrib><creatorcontrib>Zhu, Jiang</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bing</au><au>Dong, Jun</au><au>Niu, Lijing</au><au>Chen, Wenyan</au><au>Chen, Dongliang</au><au>Shen, Chengyi</au><au>Zhu, Jiang</au><au>Zhang, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone)</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>105</volume><issue>6</issue><spage>1369</spage><epage>1378</epage><pages>1369-1378</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were investigated in detail. The morphological analysis of these membranes revealed the main degradation conditions of PDPA membranes. The weight remaining and molecular weight variation showed that the overall degradation rate of the membranes could be adjusted by modulating the molecular structure of the PDPAs. Especially, α-chymotrypsin could catalyze the degradation process of PDPAs. Based on these results, the in vitro degradation mechanism was demonstrated, and confirmed by H NMR of the hydrolysis products. Finally, the in vivo degradation and biocompatibility of different PDPAs were investigated. The kinetic study showed that the in vitro and in vivo molecular weight loss of PDPAs have the first-order characteristics. The in vivo degradation rate of the most Phe-containing PDPA-3 is the slowest, and this result relates to the biocompatibilities of PDPAs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1369-1378, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27062297</pmid><doi>10.1002/jbm.b.33669</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2017-08, Vol.105 (6), p.1369-1378
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_1826663522
source Access via Wiley Online Library; MEDLINE
subjects Absorbable Implants
Adhesion
Animals
Biocompatibility
Biomedical materials
Chymotrypsin
Degradation
Electrospinning
Hydrolysis
In vitro methods and tests
In vivo methods and tests
Materials research
Materials science
Materials Testing
Membranes
Membranes, Artificial
Molecular structure
Molecular weight
NMR
Nuclear magnetic resonance
Phenylalanine
Phenylalanine - chemistry
Polyesteramides
Polyesters - chemistry
Rats
Rats, Sprague-Dawley
Tissue Adhesions - metabolism
Tissue Adhesions - prevention & control
Weight loss
title In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T13%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20and%20in%20vivo%20degradation%20of%20potential%20anti-adhesion%20materials:%20Electrospun%20membranes%20of%20poly(ester-amide)%20based%20on%20l-phenylalanine%20and%20p-(dioxanone)&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Wang,%20Bing&rft.date=2017-08-01&rft.volume=105&rft.issue=6&rft.spage=1369&rft.epage=1378&rft.pages=1369-1378&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.33669&rft_dat=%3Cproquest_cross%3E1917931692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917931692&rft_id=info:pmid/27062297&rfr_iscdi=true