In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone)
Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were invest...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2017-08, Vol.105 (6), p.1369-1378 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1378 |
---|---|
container_issue | 6 |
container_start_page | 1369 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 105 |
creator | Wang, Bing Dong, Jun Niu, Lijing Chen, Wenyan Chen, Dongliang Shen, Chengyi Zhu, Jiang Zhang, Xiaoming |
description | Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were investigated in detail. The morphological analysis of these membranes revealed the main degradation conditions of PDPA membranes. The weight remaining and molecular weight variation showed that the overall degradation rate of the membranes could be adjusted by modulating the molecular structure of the PDPAs. Especially, α-chymotrypsin could catalyze the degradation process of PDPAs. Based on these results, the in vitro degradation mechanism was demonstrated, and confirmed by
H NMR of the hydrolysis products. Finally, the in vivo degradation and biocompatibility of different PDPAs were investigated. The kinetic study showed that the in vitro and in vivo molecular weight loss of PDPAs have the first-order characteristics. The in vivo degradation rate of the most Phe-containing PDPA-3 is the slowest, and this result relates to the biocompatibilities of PDPAs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1369-1378, 2017. |
doi_str_mv | 10.1002/jbm.b.33669 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826663522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917931692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-df65d708e5a9a02399f609d06e42b05a1898eb800edc9e3480c73c00830bd7a43</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0Eoh9w4o4scdkKZfFH4sS9oaqFSpW4wNkaxxPqVWIHO6nY_8KPxdstPXDyeOaZV6_mJeQdZ1vOmPi0s9PWbqVUSr8gp7xpRFXrjr98rlt5Qs5y3hVYsUa-JieiZUoI3Z6SP7eBPvglRQrBUX_4PETq8GcCB4uPgcaBznHBsHgYC7T4Ctw95sNoggVTaedLej1iX1TyvJY2TjZBwHzcHfcbzAWsYPIOL6iFjI6W9bGa7zHsRxgh-ICPDuZq43z8DSEGvHhDXg1FHd8-vefkx83196uv1d23L7dXn--qXjb1UrlBNa5lHTaggQmp9aCYdkxhLSxrgHe6Q9sxhq7XKOuO9a3sGesks66FWp6TzVF3TvHXWsyayecex-IL45oN74RSSjZCFPTDf-gurikUd4Zr3mrJlT5QH49UX06SEw5mTn6CtDecmUNopoRmrHkMrdDvnzRXO6F7Zv-lJP8CcvmT-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917931692</pqid></control><display><type>article</type><title>In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone)</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><creator>Wang, Bing ; Dong, Jun ; Niu, Lijing ; Chen, Wenyan ; Chen, Dongliang ; Shen, Chengyi ; Zhu, Jiang ; Zhang, Xiaoming</creator><creatorcontrib>Wang, Bing ; Dong, Jun ; Niu, Lijing ; Chen, Wenyan ; Chen, Dongliang ; Shen, Chengyi ; Zhu, Jiang ; Zhang, Xiaoming</creatorcontrib><description>Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were investigated in detail. The morphological analysis of these membranes revealed the main degradation conditions of PDPA membranes. The weight remaining and molecular weight variation showed that the overall degradation rate of the membranes could be adjusted by modulating the molecular structure of the PDPAs. Especially, α-chymotrypsin could catalyze the degradation process of PDPAs. Based on these results, the in vitro degradation mechanism was demonstrated, and confirmed by
H NMR of the hydrolysis products. Finally, the in vivo degradation and biocompatibility of different PDPAs were investigated. The kinetic study showed that the in vitro and in vivo molecular weight loss of PDPAs have the first-order characteristics. The in vivo degradation rate of the most Phe-containing PDPA-3 is the slowest, and this result relates to the biocompatibilities of PDPAs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1369-1378, 2017.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.33669</identifier><identifier>PMID: 27062297</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Absorbable Implants ; Adhesion ; Animals ; Biocompatibility ; Biomedical materials ; Chymotrypsin ; Degradation ; Electrospinning ; Hydrolysis ; In vitro methods and tests ; In vivo methods and tests ; Materials research ; Materials science ; Materials Testing ; Membranes ; Membranes, Artificial ; Molecular structure ; Molecular weight ; NMR ; Nuclear magnetic resonance ; Phenylalanine ; Phenylalanine - chemistry ; Polyesteramides ; Polyesters - chemistry ; Rats ; Rats, Sprague-Dawley ; Tissue Adhesions - metabolism ; Tissue Adhesions - prevention & control ; Weight loss</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2017-08, Vol.105 (6), p.1369-1378</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-df65d708e5a9a02399f609d06e42b05a1898eb800edc9e3480c73c00830bd7a43</citedby><cites>FETCH-LOGICAL-c354t-df65d708e5a9a02399f609d06e42b05a1898eb800edc9e3480c73c00830bd7a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27062297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Dong, Jun</creatorcontrib><creatorcontrib>Niu, Lijing</creatorcontrib><creatorcontrib>Chen, Wenyan</creatorcontrib><creatorcontrib>Chen, Dongliang</creatorcontrib><creatorcontrib>Shen, Chengyi</creatorcontrib><creatorcontrib>Zhu, Jiang</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><title>In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone)</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were investigated in detail. The morphological analysis of these membranes revealed the main degradation conditions of PDPA membranes. The weight remaining and molecular weight variation showed that the overall degradation rate of the membranes could be adjusted by modulating the molecular structure of the PDPAs. Especially, α-chymotrypsin could catalyze the degradation process of PDPAs. Based on these results, the in vitro degradation mechanism was demonstrated, and confirmed by
H NMR of the hydrolysis products. Finally, the in vivo degradation and biocompatibility of different PDPAs were investigated. The kinetic study showed that the in vitro and in vivo molecular weight loss of PDPAs have the first-order characteristics. The in vivo degradation rate of the most Phe-containing PDPA-3 is the slowest, and this result relates to the biocompatibilities of PDPAs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1369-1378, 2017.</description><subject>Absorbable Implants</subject><subject>Adhesion</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Chymotrypsin</subject><subject>Degradation</subject><subject>Electrospinning</subject><subject>Hydrolysis</subject><subject>In vitro methods and tests</subject><subject>In vivo methods and tests</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Molecular structure</subject><subject>Molecular weight</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phenylalanine</subject><subject>Phenylalanine - chemistry</subject><subject>Polyesteramides</subject><subject>Polyesters - chemistry</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Tissue Adhesions - metabolism</subject><subject>Tissue Adhesions - prevention & control</subject><subject>Weight loss</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0Eoh9w4o4scdkKZfFH4sS9oaqFSpW4wNkaxxPqVWIHO6nY_8KPxdstPXDyeOaZV6_mJeQdZ1vOmPi0s9PWbqVUSr8gp7xpRFXrjr98rlt5Qs5y3hVYsUa-JieiZUoI3Z6SP7eBPvglRQrBUX_4PETq8GcCB4uPgcaBznHBsHgYC7T4Ctw95sNoggVTaedLej1iX1TyvJY2TjZBwHzcHfcbzAWsYPIOL6iFjI6W9bGa7zHsRxgh-ICPDuZq43z8DSEGvHhDXg1FHd8-vefkx83196uv1d23L7dXn--qXjb1UrlBNa5lHTaggQmp9aCYdkxhLSxrgHe6Q9sxhq7XKOuO9a3sGesks66FWp6TzVF3TvHXWsyayecex-IL45oN74RSSjZCFPTDf-gurikUd4Zr3mrJlT5QH49UX06SEw5mTn6CtDecmUNopoRmrHkMrdDvnzRXO6F7Zv-lJP8CcvmT-g</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Wang, Bing</creator><creator>Dong, Jun</creator><creator>Niu, Lijing</creator><creator>Chen, Wenyan</creator><creator>Chen, Dongliang</creator><creator>Shen, Chengyi</creator><creator>Zhu, Jiang</creator><creator>Zhang, Xiaoming</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170801</creationdate><title>In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone)</title><author>Wang, Bing ; Dong, Jun ; Niu, Lijing ; Chen, Wenyan ; Chen, Dongliang ; Shen, Chengyi ; Zhu, Jiang ; Zhang, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-df65d708e5a9a02399f609d06e42b05a1898eb800edc9e3480c73c00830bd7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorbable Implants</topic><topic>Adhesion</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Chymotrypsin</topic><topic>Degradation</topic><topic>Electrospinning</topic><topic>Hydrolysis</topic><topic>In vitro methods and tests</topic><topic>In vivo methods and tests</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Molecular structure</topic><topic>Molecular weight</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phenylalanine</topic><topic>Phenylalanine - chemistry</topic><topic>Polyesteramides</topic><topic>Polyesters - chemistry</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Tissue Adhesions - metabolism</topic><topic>Tissue Adhesions - prevention & control</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Dong, Jun</creatorcontrib><creatorcontrib>Niu, Lijing</creatorcontrib><creatorcontrib>Chen, Wenyan</creatorcontrib><creatorcontrib>Chen, Dongliang</creatorcontrib><creatorcontrib>Shen, Chengyi</creatorcontrib><creatorcontrib>Zhu, Jiang</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bing</au><au>Dong, Jun</au><au>Niu, Lijing</au><au>Chen, Wenyan</au><au>Chen, Dongliang</au><au>Shen, Chengyi</au><au>Zhu, Jiang</au><au>Zhang, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone)</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>105</volume><issue>6</issue><spage>1369</spage><epage>1378</epage><pages>1369-1378</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were investigated in detail. The morphological analysis of these membranes revealed the main degradation conditions of PDPA membranes. The weight remaining and molecular weight variation showed that the overall degradation rate of the membranes could be adjusted by modulating the molecular structure of the PDPAs. Especially, α-chymotrypsin could catalyze the degradation process of PDPAs. Based on these results, the in vitro degradation mechanism was demonstrated, and confirmed by
H NMR of the hydrolysis products. Finally, the in vivo degradation and biocompatibility of different PDPAs were investigated. The kinetic study showed that the in vitro and in vivo molecular weight loss of PDPAs have the first-order characteristics. The in vivo degradation rate of the most Phe-containing PDPA-3 is the slowest, and this result relates to the biocompatibilities of PDPAs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1369-1378, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27062297</pmid><doi>10.1002/jbm.b.33669</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2017-08, Vol.105 (6), p.1369-1378 |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826663522 |
source | Access via Wiley Online Library; MEDLINE |
subjects | Absorbable Implants Adhesion Animals Biocompatibility Biomedical materials Chymotrypsin Degradation Electrospinning Hydrolysis In vitro methods and tests In vivo methods and tests Materials research Materials science Materials Testing Membranes Membranes, Artificial Molecular structure Molecular weight NMR Nuclear magnetic resonance Phenylalanine Phenylalanine - chemistry Polyesteramides Polyesters - chemistry Rats Rats, Sprague-Dawley Tissue Adhesions - metabolism Tissue Adhesions - prevention & control Weight loss |
title | In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T13%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20and%20in%20vivo%20degradation%20of%20potential%20anti-adhesion%20materials:%20Electrospun%20membranes%20of%20poly(ester-amide)%20based%20on%20l-phenylalanine%20and%20p-(dioxanone)&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Wang,%20Bing&rft.date=2017-08-01&rft.volume=105&rft.issue=6&rft.spage=1369&rft.epage=1378&rft.pages=1369-1378&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.33669&rft_dat=%3Cproquest_cross%3E1917931692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917931692&rft_id=info:pmid/27062297&rfr_iscdi=true |