IWO Algorithm Based on Niche Crowding for DNA Sequence Design
The design of DNA sequences is essential for the implementation of DNA computing, where the quantity and quality can directly affect the accuracy and efficiency of calculations. Many studies have focused on the design of good DNA sequences to make DNA computing more reliable. However, DNA sequence d...
Gespeichert in:
Veröffentlicht in: | Interdisciplinary sciences : computational life sciences 2017-09, Vol.9 (3), p.341-349 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 349 |
---|---|
container_issue | 3 |
container_start_page | 341 |
container_title | Interdisciplinary sciences : computational life sciences |
container_volume | 9 |
creator | Yang, Gaijing Wang, Bin Zheng, Xuedong Zhou, Changjun Zhang, Qiang |
description | The design of DNA sequences is essential for the implementation of DNA computing, where the quantity and quality can directly affect the accuracy and efficiency of calculations. Many studies have focused on the design of good DNA sequences to make DNA computing more reliable. However, DNA sequence design needs to satisfy various constraints at the same time, which is an NP-hard problem. In this study, we specify appropriate constraints that should be satisfied in the design of DNA sequences and we propose evaluation formulae. We employ the Invasive Weed Optimization (IWO) algorithm and the niche crowding in the algorithm to solve the DNA sequence design problem. We also improve the spatial dispersal in the traditional IWO algorithm. Finally, we compared the sequences obtained with existing sequences based on the results obtained using a comprehensive fitness function, which demonstrated the efficiency of the proposed method. |
doi_str_mv | 10.1007/s12539-016-0160-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826660927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002045642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-7efd2bcbeec5673f69bdaf0b08daed863fd8ace725c351f8f7fe59001973a7503</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMotlY_gBcJePGyOkmaZPfgobb-KZT2oOIx7GYn7Zbtbk1axG_vLq0KgodhBuY3bx6PkHMG1wxA3wTGpUgiYKotiOCAdFmsdMT6ih82c8JExLVkHXISwhJA9WMBx6TDNTAhIemS2_HbjA7Kee2LzWJF79KAOa0rOi3sAunQ1x95Uc2pqz0dTQf0Gd-3WFmkIwzFvDolRy4tA57te4-8Pty_DJ-iyexxPBxMIis030QaXc4zmyFaqbRwKsny1EEGcZ5iHivh8ji1qLm0QjIXO-1QJgAs0SLVEkSPXO10175uDISNWRXBYlmmFdbbYFjMlVKQcN2gl3_QZb31VePOcAAOfan6vKHYjrK-DsGjM2tfrFL_aRiYNluzy9Y0ubYFpjVxsVfeZivMfy6-w2wAvgNCs6rm6H9f_6_6BXNJgcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002045642</pqid></control><display><type>article</type><title>IWO Algorithm Based on Niche Crowding for DNA Sequence Design</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Yang, Gaijing ; Wang, Bin ; Zheng, Xuedong ; Zhou, Changjun ; Zhang, Qiang</creator><creatorcontrib>Yang, Gaijing ; Wang, Bin ; Zheng, Xuedong ; Zhou, Changjun ; Zhang, Qiang</creatorcontrib><description>The design of DNA sequences is essential for the implementation of DNA computing, where the quantity and quality can directly affect the accuracy and efficiency of calculations. Many studies have focused on the design of good DNA sequences to make DNA computing more reliable. However, DNA sequence design needs to satisfy various constraints at the same time, which is an NP-hard problem. In this study, we specify appropriate constraints that should be satisfied in the design of DNA sequences and we propose evaluation formulae. We employ the Invasive Weed Optimization (IWO) algorithm and the niche crowding in the algorithm to solve the DNA sequence design problem. We also improve the spatial dispersal in the traditional IWO algorithm. Finally, we compared the sequences obtained with existing sequences based on the results obtained using a comprehensive fitness function, which demonstrated the efficiency of the proposed method.</description><identifier>ISSN: 1913-2751</identifier><identifier>EISSN: 1867-1462</identifier><identifier>DOI: 10.1007/s12539-016-0160-0</identifier><identifier>PMID: 27013509</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Base Sequence ; Biomedical and Life Sciences ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Appl. in Life Sciences ; Computer Simulation ; Computing time ; Crowding ; Deoxyribonucleic acid ; Design ; Dispersal ; DNA ; Fitness ; Gene sequencing ; Health Sciences ; Invasive plants ; Life Sciences ; Mathematical and Computational Physics ; Medicine ; Nucleotide sequence ; Original Research Article ; Sequence Analysis, DNA ; Statistics for Life Sciences ; Theoretical ; Theoretical and Computational Chemistry</subject><ispartof>Interdisciplinary sciences : computational life sciences, 2017-09, Vol.9 (3), p.341-349</ispartof><rights>International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Interdisciplinary Sciences: Computational Life Sciences is a copyright of Springer, (2016). All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-7efd2bcbeec5673f69bdaf0b08daed863fd8ace725c351f8f7fe59001973a7503</citedby><cites>FETCH-LOGICAL-c372t-7efd2bcbeec5673f69bdaf0b08daed863fd8ace725c351f8f7fe59001973a7503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12539-016-0160-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12539-016-0160-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27013509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Gaijing</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zheng, Xuedong</creatorcontrib><creatorcontrib>Zhou, Changjun</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><title>IWO Algorithm Based on Niche Crowding for DNA Sequence Design</title><title>Interdisciplinary sciences : computational life sciences</title><addtitle>Interdiscip Sci Comput Life Sci</addtitle><addtitle>Interdiscip Sci</addtitle><description>The design of DNA sequences is essential for the implementation of DNA computing, where the quantity and quality can directly affect the accuracy and efficiency of calculations. Many studies have focused on the design of good DNA sequences to make DNA computing more reliable. However, DNA sequence design needs to satisfy various constraints at the same time, which is an NP-hard problem. In this study, we specify appropriate constraints that should be satisfied in the design of DNA sequences and we propose evaluation formulae. We employ the Invasive Weed Optimization (IWO) algorithm and the niche crowding in the algorithm to solve the DNA sequence design problem. We also improve the spatial dispersal in the traditional IWO algorithm. Finally, we compared the sequences obtained with existing sequences based on the results obtained using a comprehensive fitness function, which demonstrated the efficiency of the proposed method.</description><subject>Algorithms</subject><subject>Base Sequence</subject><subject>Biomedical and Life Sciences</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Simulation</subject><subject>Computing time</subject><subject>Crowding</subject><subject>Deoxyribonucleic acid</subject><subject>Design</subject><subject>Dispersal</subject><subject>DNA</subject><subject>Fitness</subject><subject>Gene sequencing</subject><subject>Health Sciences</subject><subject>Invasive plants</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Physics</subject><subject>Medicine</subject><subject>Nucleotide sequence</subject><subject>Original Research Article</subject><subject>Sequence Analysis, DNA</subject><subject>Statistics for Life Sciences</subject><subject>Theoretical</subject><subject>Theoretical and Computational Chemistry</subject><issn>1913-2751</issn><issn>1867-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMotlY_gBcJePGyOkmaZPfgobb-KZT2oOIx7GYn7Zbtbk1axG_vLq0KgodhBuY3bx6PkHMG1wxA3wTGpUgiYKotiOCAdFmsdMT6ih82c8JExLVkHXISwhJA9WMBx6TDNTAhIemS2_HbjA7Kee2LzWJF79KAOa0rOi3sAunQ1x95Uc2pqz0dTQf0Gd-3WFmkIwzFvDolRy4tA57te4-8Pty_DJ-iyexxPBxMIis030QaXc4zmyFaqbRwKsny1EEGcZ5iHivh8ji1qLm0QjIXO-1QJgAs0SLVEkSPXO10175uDISNWRXBYlmmFdbbYFjMlVKQcN2gl3_QZb31VePOcAAOfan6vKHYjrK-DsGjM2tfrFL_aRiYNluzy9Y0ubYFpjVxsVfeZivMfy6-w2wAvgNCs6rm6H9f_6_6BXNJgcU</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Yang, Gaijing</creator><creator>Wang, Bin</creator><creator>Zheng, Xuedong</creator><creator>Zhou, Changjun</creator><creator>Zhang, Qiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope></search><sort><creationdate>20170901</creationdate><title>IWO Algorithm Based on Niche Crowding for DNA Sequence Design</title><author>Yang, Gaijing ; Wang, Bin ; Zheng, Xuedong ; Zhou, Changjun ; Zhang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-7efd2bcbeec5673f69bdaf0b08daed863fd8ace725c351f8f7fe59001973a7503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Base Sequence</topic><topic>Biomedical and Life Sciences</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Simulation</topic><topic>Computing time</topic><topic>Crowding</topic><topic>Deoxyribonucleic acid</topic><topic>Design</topic><topic>Dispersal</topic><topic>DNA</topic><topic>Fitness</topic><topic>Gene sequencing</topic><topic>Health Sciences</topic><topic>Invasive plants</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Physics</topic><topic>Medicine</topic><topic>Nucleotide sequence</topic><topic>Original Research Article</topic><topic>Sequence Analysis, DNA</topic><topic>Statistics for Life Sciences</topic><topic>Theoretical</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Gaijing</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zheng, Xuedong</creatorcontrib><creatorcontrib>Zhou, Changjun</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Interdisciplinary sciences : computational life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Gaijing</au><au>Wang, Bin</au><au>Zheng, Xuedong</au><au>Zhou, Changjun</au><au>Zhang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IWO Algorithm Based on Niche Crowding for DNA Sequence Design</atitle><jtitle>Interdisciplinary sciences : computational life sciences</jtitle><stitle>Interdiscip Sci Comput Life Sci</stitle><addtitle>Interdiscip Sci</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>9</volume><issue>3</issue><spage>341</spage><epage>349</epage><pages>341-349</pages><issn>1913-2751</issn><eissn>1867-1462</eissn><abstract>The design of DNA sequences is essential for the implementation of DNA computing, where the quantity and quality can directly affect the accuracy and efficiency of calculations. Many studies have focused on the design of good DNA sequences to make DNA computing more reliable. However, DNA sequence design needs to satisfy various constraints at the same time, which is an NP-hard problem. In this study, we specify appropriate constraints that should be satisfied in the design of DNA sequences and we propose evaluation formulae. We employ the Invasive Weed Optimization (IWO) algorithm and the niche crowding in the algorithm to solve the DNA sequence design problem. We also improve the spatial dispersal in the traditional IWO algorithm. Finally, we compared the sequences obtained with existing sequences based on the results obtained using a comprehensive fitness function, which demonstrated the efficiency of the proposed method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27013509</pmid><doi>10.1007/s12539-016-0160-0</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1913-2751 |
ispartof | Interdisciplinary sciences : computational life sciences, 2017-09, Vol.9 (3), p.341-349 |
issn | 1913-2751 1867-1462 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826660927 |
source | MEDLINE; SpringerLink Journals |
subjects | Algorithms Base Sequence Biomedical and Life Sciences Computational Biology/Bioinformatics Computational Science and Engineering Computer Appl. in Life Sciences Computer Simulation Computing time Crowding Deoxyribonucleic acid Design Dispersal DNA Fitness Gene sequencing Health Sciences Invasive plants Life Sciences Mathematical and Computational Physics Medicine Nucleotide sequence Original Research Article Sequence Analysis, DNA Statistics for Life Sciences Theoretical Theoretical and Computational Chemistry |
title | IWO Algorithm Based on Niche Crowding for DNA Sequence Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IWO%20Algorithm%20Based%20on%20Niche%20Crowding%20for%20DNA%20Sequence%20Design&rft.jtitle=Interdisciplinary%20sciences%20:%20computational%20life%20sciences&rft.au=Yang,%20Gaijing&rft.date=2017-09-01&rft.volume=9&rft.issue=3&rft.spage=341&rft.epage=349&rft.pages=341-349&rft.issn=1913-2751&rft.eissn=1867-1462&rft_id=info:doi/10.1007/s12539-016-0160-0&rft_dat=%3Cproquest_cross%3E2002045642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002045642&rft_id=info:pmid/27013509&rfr_iscdi=true |