Bayesian joint modeling for assessing the progression of chronic kidney disease in children

Joint models are rich and flexible models for analyzing longitudinal data with nonignorable missing data mechanisms. This article proposes a Bayesian random-effects joint model to assess the evolution of a longitudinal process in terms of a linear mixed-effects model that accounts for heterogeneity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2018-01, Vol.27 (1), p.298-311
Hauptverfasser: Armero, Carmen, Forte, Anabel, Perpiñán, Hèctor, Sanahuja, María José, Agustí, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 1
container_start_page 298
container_title Statistical methods in medical research
container_volume 27
creator Armero, Carmen
Forte, Anabel
Perpiñán, Hèctor
Sanahuja, María José
Agustí, Silvia
description Joint models are rich and flexible models for analyzing longitudinal data with nonignorable missing data mechanisms. This article proposes a Bayesian random-effects joint model to assess the evolution of a longitudinal process in terms of a linear mixed-effects model that accounts for heterogeneity between the subjects, serial correlation, and measurement error. Dropout is modeled in terms of a survival model with competing risks and left truncation. The model is applied to data coming from ReVaPIR, a project involving children with chronic kidney disease whose evolution is mainly assessed through longitudinal measurements of glomerular filtration rate.
doi_str_mv 10.1177/0962280216628560
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826660389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280216628560</sage_id><sourcerecordid>1826660389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-a290916b9272485c565dcc4ef7dd9364c9eec082b695ba9e3248195d0642c6543</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMotlbvniTgxctqPjbZzVGLX1DwoicPS5rMtqnbpCbtof-9WVpFBE_D8H7zZuYhdE7JNaVVdUOUZKwmjErJaiHJARrSsqoKwnl5iIa9XPT6AJ2ktCCEVKRUx2jApKprxfkQvd_pLSSnPV4E59d4GSx0zs9wGyLWKUFKfbeeA17FMIt9HzwOLTbzGLwz-MNZD1tsXQKdADufFdfZCP4UHbW6S3C2ryP09nD_On4qJi-Pz-PbSWG4FOtCM0UUlVPFKlbWwggprDEltJW1isvSKABDajaVSky1Ap4pqoQlsmRGipKP0NXON1_4uYG0bpYuGeg67SFsUkNrJqUkPH88Qpd_0EXYRJ-va6iqKyVUts4U2VEmhpQitM0quqWO24aSpg---Rt8HrnYG2-mS7A_A99JZ6DYAUnP4NfW_wy_AKRrib0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987959819</pqid></control><display><type>article</type><title>Bayesian joint modeling for assessing the progression of chronic kidney disease in children</title><source>SAGE Complete</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Armero, Carmen ; Forte, Anabel ; Perpiñán, Hèctor ; Sanahuja, María José ; Agustí, Silvia</creator><creatorcontrib>Armero, Carmen ; Forte, Anabel ; Perpiñán, Hèctor ; Sanahuja, María José ; Agustí, Silvia</creatorcontrib><description>Joint models are rich and flexible models for analyzing longitudinal data with nonignorable missing data mechanisms. This article proposes a Bayesian random-effects joint model to assess the evolution of a longitudinal process in terms of a linear mixed-effects model that accounts for heterogeneity between the subjects, serial correlation, and measurement error. Dropout is modeled in terms of a survival model with competing risks and left truncation. The model is applied to data coming from ReVaPIR, a project involving children with chronic kidney disease whose evolution is mainly assessed through longitudinal measurements of glomerular filtration rate.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280216628560</identifier><identifier>PMID: 26988933</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bayesian analysis ; Children ; Competing risks models ; Correlation analysis ; Dropping out ; Error analysis ; Evolution ; Kidney diseases ; Measurement ; Missing data</subject><ispartof>Statistical methods in medical research, 2018-01, Vol.27 (1), p.298-311</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-a290916b9272485c565dcc4ef7dd9364c9eec082b695ba9e3248195d0642c6543</citedby><cites>FETCH-LOGICAL-c365t-a290916b9272485c565dcc4ef7dd9364c9eec082b695ba9e3248195d0642c6543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280216628560$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280216628560$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21802,27907,27908,30982,43604,43605</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26988933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Armero, Carmen</creatorcontrib><creatorcontrib>Forte, Anabel</creatorcontrib><creatorcontrib>Perpiñán, Hèctor</creatorcontrib><creatorcontrib>Sanahuja, María José</creatorcontrib><creatorcontrib>Agustí, Silvia</creatorcontrib><title>Bayesian joint modeling for assessing the progression of chronic kidney disease in children</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Joint models are rich and flexible models for analyzing longitudinal data with nonignorable missing data mechanisms. This article proposes a Bayesian random-effects joint model to assess the evolution of a longitudinal process in terms of a linear mixed-effects model that accounts for heterogeneity between the subjects, serial correlation, and measurement error. Dropout is modeled in terms of a survival model with competing risks and left truncation. The model is applied to data coming from ReVaPIR, a project involving children with chronic kidney disease whose evolution is mainly assessed through longitudinal measurements of glomerular filtration rate.</description><subject>Bayesian analysis</subject><subject>Children</subject><subject>Competing risks models</subject><subject>Correlation analysis</subject><subject>Dropping out</subject><subject>Error analysis</subject><subject>Evolution</subject><subject>Kidney diseases</subject><subject>Measurement</subject><subject>Missing data</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kM1LAzEQxYMotlbvniTgxctqPjbZzVGLX1DwoicPS5rMtqnbpCbtof-9WVpFBE_D8H7zZuYhdE7JNaVVdUOUZKwmjErJaiHJARrSsqoKwnl5iIa9XPT6AJ2ktCCEVKRUx2jApKprxfkQvd_pLSSnPV4E59d4GSx0zs9wGyLWKUFKfbeeA17FMIt9HzwOLTbzGLwz-MNZD1tsXQKdADufFdfZCP4UHbW6S3C2ryP09nD_On4qJi-Pz-PbSWG4FOtCM0UUlVPFKlbWwggprDEltJW1isvSKABDajaVSky1Ap4pqoQlsmRGipKP0NXON1_4uYG0bpYuGeg67SFsUkNrJqUkPH88Qpd_0EXYRJ-va6iqKyVUts4U2VEmhpQitM0quqWO24aSpg---Rt8HrnYG2-mS7A_A99JZ6DYAUnP4NfW_wy_AKRrib0</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Armero, Carmen</creator><creator>Forte, Anabel</creator><creator>Perpiñán, Hèctor</creator><creator>Sanahuja, María José</creator><creator>Agustí, Silvia</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>Bayesian joint modeling for assessing the progression of chronic kidney disease in children</title><author>Armero, Carmen ; Forte, Anabel ; Perpiñán, Hèctor ; Sanahuja, María José ; Agustí, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-a290916b9272485c565dcc4ef7dd9364c9eec082b695ba9e3248195d0642c6543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Children</topic><topic>Competing risks models</topic><topic>Correlation analysis</topic><topic>Dropping out</topic><topic>Error analysis</topic><topic>Evolution</topic><topic>Kidney diseases</topic><topic>Measurement</topic><topic>Missing data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armero, Carmen</creatorcontrib><creatorcontrib>Forte, Anabel</creatorcontrib><creatorcontrib>Perpiñán, Hèctor</creatorcontrib><creatorcontrib>Sanahuja, María José</creatorcontrib><creatorcontrib>Agustí, Silvia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armero, Carmen</au><au>Forte, Anabel</au><au>Perpiñán, Hèctor</au><au>Sanahuja, María José</au><au>Agustí, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian joint modeling for assessing the progression of chronic kidney disease in children</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2018-01</date><risdate>2018</risdate><volume>27</volume><issue>1</issue><spage>298</spage><epage>311</epage><pages>298-311</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Joint models are rich and flexible models for analyzing longitudinal data with nonignorable missing data mechanisms. This article proposes a Bayesian random-effects joint model to assess the evolution of a longitudinal process in terms of a linear mixed-effects model that accounts for heterogeneity between the subjects, serial correlation, and measurement error. Dropout is modeled in terms of a survival model with competing risks and left truncation. The model is applied to data coming from ReVaPIR, a project involving children with chronic kidney disease whose evolution is mainly assessed through longitudinal measurements of glomerular filtration rate.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>26988933</pmid><doi>10.1177/0962280216628560</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2018-01, Vol.27 (1), p.298-311
issn 0962-2802
1477-0334
language eng
recordid cdi_proquest_miscellaneous_1826660389
source SAGE Complete; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Bayesian analysis
Children
Competing risks models
Correlation analysis
Dropping out
Error analysis
Evolution
Kidney diseases
Measurement
Missing data
title Bayesian joint modeling for assessing the progression of chronic kidney disease in children
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20joint%20modeling%20for%20assessing%20the%20progression%20of%20chronic%20kidney%20disease%20in%20children&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Armero,%20Carmen&rft.date=2018-01&rft.volume=27&rft.issue=1&rft.spage=298&rft.epage=311&rft.pages=298-311&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280216628560&rft_dat=%3Cproquest_cross%3E1826660389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987959819&rft_id=info:pmid/26988933&rft_sage_id=10.1177_0962280216628560&rfr_iscdi=true