Autophagy Modulates Cell Mineralization on Fluorapatite-Modified Scaffolds

As a major intracellular degradation and recycling machinery, autophagy plays an important role in maintaining cellular homeostasis and remodeling during normal development. Our previous study showed that fluorapatite (FA) crystal-coated electrospun polycaprolactone (PCL) was capable of inducing dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dental research 2016-06, Vol.95 (6), p.650-656
Hauptverfasser: Li, Y., Guo, T., Zhang, Z., Yao, Y., Chang, S., Nör, J.E., Clarkson, B.H., Ni, L., Liu, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 656
container_issue 6
container_start_page 650
container_title Journal of dental research
container_volume 95
creator Li, Y.
Guo, T.
Zhang, Z.
Yao, Y.
Chang, S.
Nör, J.E.
Clarkson, B.H.
Ni, L.
Liu, J.
description As a major intracellular degradation and recycling machinery, autophagy plays an important role in maintaining cellular homeostasis and remodeling during normal development. Our previous study showed that fluorapatite (FA) crystal-coated electrospun polycaprolactone (PCL) was capable of inducing differentiation and mineralization of human dental pulp stem cells. However, how autophagy changes and whether autophagy plays a vital role during these processes is still unknown. In this study, we seeded STEMPRO human adipose-derived stem cells (ASCs) on both PCL+FA and PCL scaffolds to investigate the osteogenic inductive ability of FA crystals and we observed the autophagy changes of these cells. Scanning electron microscopy and fluorescence microscopy images, along with DNA quantitation, showed that both PCL+FA and PCL scaffolds could sustain ASC growth but only the PCL+FA scaffold could sustain cell mineralization. This was confirmed by alkaline phosphatase activity and Alizarin red and Von Kossa staining results. The autophagy RT2 Profiler polymerase chain reaction array analysis showed many autophagy-related genes changes during ASC differentiation. Western blot analysis indicated that several autophagy-related proteins fluctuated during the procedure. Among them, the microtubule-associated protein 1 light chain 3 (LC3)-II protein changes of the ASCs grown on the 2- or 3-dimensional environments at 6 h, 12 h, 1 d, 3 d, 7 d, 14 d, and 21 d reached a peak value at day 7 during osteogenesis. At earlier stages (from day 0 to day 3), the addition of autophagy inhibitors (3-mathyladenine, bafilomycin A1, and NH4Cl) attenuated the expression of osteogenic related markers (osteopontin, alkaline phosphatase activity, Alizarin red, and Von Kossa) compared with the control group. All data indicated that autophagy played an important role in ASC differentiation on the PCL+FA scaffold. Inhibition of autophagy before day 3 strongly inhibited osteogenic differentiation and mineralization of ASCs in the 3-dimensional model. This observation further elucidates the mechanism of autophagy in mesenchymal stem cell osteogenic differentiation.
doi_str_mv 10.1177/0022034516636852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826657019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0022034516636852</sage_id><sourcerecordid>2300620834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-93269fbe1079bcafcb846020a516d83a94ecb2b1e9dcbd5ea62355ab515c239c3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vnqTgxUv1JWnS5jiG8wcbHtRzSdJ0dnRNTdrD_OvN6FQYCIFHeJ_v9733RegSwy3GaXoHQAjQhGHOKc8YOUJjzJIkBibwMRrv2vGuP0Jn3q8BsCAZPUUjwgXHiYAxep72nW0_5GobLW3R17IzPpqZuo6WVWOcrKsv2VW2icKb1711sg3_zsSBrsrKFNGrlmVp68Kfo5NS1t5c7OsEvc_v32aP8eLl4Wk2XcSactbFgobppTIYUqGCVqss4UBAhiuKjEqRGK2IwkYUWhXMSE4oY1IxzDShQtMJuhl8W2c_e-O7fFN5HVaWjbG9z3FGOGdpODag1wfo2vauCdvlhAJwAhlNAgUDpZ313pkyb121kW6bY8h3OeeHOQfJ1d64VxtT_Ap-gg1APABerszf1H8NvwF0G4QR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300620834</pqid></control><display><type>article</type><title>Autophagy Modulates Cell Mineralization on Fluorapatite-Modified Scaffolds</title><source>SAGE Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Y. ; Guo, T. ; Zhang, Z. ; Yao, Y. ; Chang, S. ; Nör, J.E. ; Clarkson, B.H. ; Ni, L. ; Liu, J.</creator><creatorcontrib>Li, Y. ; Guo, T. ; Zhang, Z. ; Yao, Y. ; Chang, S. ; Nör, J.E. ; Clarkson, B.H. ; Ni, L. ; Liu, J.</creatorcontrib><description>As a major intracellular degradation and recycling machinery, autophagy plays an important role in maintaining cellular homeostasis and remodeling during normal development. Our previous study showed that fluorapatite (FA) crystal-coated electrospun polycaprolactone (PCL) was capable of inducing differentiation and mineralization of human dental pulp stem cells. However, how autophagy changes and whether autophagy plays a vital role during these processes is still unknown. In this study, we seeded STEMPRO human adipose-derived stem cells (ASCs) on both PCL+FA and PCL scaffolds to investigate the osteogenic inductive ability of FA crystals and we observed the autophagy changes of these cells. Scanning electron microscopy and fluorescence microscopy images, along with DNA quantitation, showed that both PCL+FA and PCL scaffolds could sustain ASC growth but only the PCL+FA scaffold could sustain cell mineralization. This was confirmed by alkaline phosphatase activity and Alizarin red and Von Kossa staining results. The autophagy RT2 Profiler polymerase chain reaction array analysis showed many autophagy-related genes changes during ASC differentiation. Western blot analysis indicated that several autophagy-related proteins fluctuated during the procedure. Among them, the microtubule-associated protein 1 light chain 3 (LC3)-II protein changes of the ASCs grown on the 2- or 3-dimensional environments at 6 h, 12 h, 1 d, 3 d, 7 d, 14 d, and 21 d reached a peak value at day 7 during osteogenesis. At earlier stages (from day 0 to day 3), the addition of autophagy inhibitors (3-mathyladenine, bafilomycin A1, and NH4Cl) attenuated the expression of osteogenic related markers (osteopontin, alkaline phosphatase activity, Alizarin red, and Von Kossa) compared with the control group. All data indicated that autophagy played an important role in ASC differentiation on the PCL+FA scaffold. Inhibition of autophagy before day 3 strongly inhibited osteogenic differentiation and mineralization of ASCs in the 3-dimensional model. This observation further elucidates the mechanism of autophagy in mesenchymal stem cell osteogenic differentiation.</description><identifier>ISSN: 0022-0345</identifier><identifier>EISSN: 1544-0591</identifier><identifier>DOI: 10.1177/0022034516636852</identifier><identifier>PMID: 26961490</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Alkaline phosphatase ; Ammonium chloride ; Autophagy ; Cell differentiation ; Crystals ; Data analysis ; Dental pulp ; Deoxyribonucleic acid ; DNA ; Ethanol ; Experiments ; Homeostasis ; Kinases ; Mesenchyme ; Microscopy ; Microtubule-associated protein 1 ; Mineralization ; Osteogenesis ; Osteopontin ; Phagocytosis ; Phosphatase ; Polycaprolactone ; Polymerase chain reaction ; Proteins ; Quantitation ; Scanning electron microscopy ; Stem cells ; Studies ; Tissue engineering</subject><ispartof>Journal of dental research, 2016-06, Vol.95 (6), p.650-656</ispartof><rights>International &amp; American Associations for Dental Research 2016</rights><rights>International &amp; American Associations for Dental Research 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-93269fbe1079bcafcb846020a516d83a94ecb2b1e9dcbd5ea62355ab515c239c3</citedby><cites>FETCH-LOGICAL-c365t-93269fbe1079bcafcb846020a516d83a94ecb2b1e9dcbd5ea62355ab515c239c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0022034516636852$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0022034516636852$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26961490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Guo, T.</creatorcontrib><creatorcontrib>Zhang, Z.</creatorcontrib><creatorcontrib>Yao, Y.</creatorcontrib><creatorcontrib>Chang, S.</creatorcontrib><creatorcontrib>Nör, J.E.</creatorcontrib><creatorcontrib>Clarkson, B.H.</creatorcontrib><creatorcontrib>Ni, L.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><title>Autophagy Modulates Cell Mineralization on Fluorapatite-Modified Scaffolds</title><title>Journal of dental research</title><addtitle>J Dent Res</addtitle><description>As a major intracellular degradation and recycling machinery, autophagy plays an important role in maintaining cellular homeostasis and remodeling during normal development. Our previous study showed that fluorapatite (FA) crystal-coated electrospun polycaprolactone (PCL) was capable of inducing differentiation and mineralization of human dental pulp stem cells. However, how autophagy changes and whether autophagy plays a vital role during these processes is still unknown. In this study, we seeded STEMPRO human adipose-derived stem cells (ASCs) on both PCL+FA and PCL scaffolds to investigate the osteogenic inductive ability of FA crystals and we observed the autophagy changes of these cells. Scanning electron microscopy and fluorescence microscopy images, along with DNA quantitation, showed that both PCL+FA and PCL scaffolds could sustain ASC growth but only the PCL+FA scaffold could sustain cell mineralization. This was confirmed by alkaline phosphatase activity and Alizarin red and Von Kossa staining results. The autophagy RT2 Profiler polymerase chain reaction array analysis showed many autophagy-related genes changes during ASC differentiation. Western blot analysis indicated that several autophagy-related proteins fluctuated during the procedure. Among them, the microtubule-associated protein 1 light chain 3 (LC3)-II protein changes of the ASCs grown on the 2- or 3-dimensional environments at 6 h, 12 h, 1 d, 3 d, 7 d, 14 d, and 21 d reached a peak value at day 7 during osteogenesis. At earlier stages (from day 0 to day 3), the addition of autophagy inhibitors (3-mathyladenine, bafilomycin A1, and NH4Cl) attenuated the expression of osteogenic related markers (osteopontin, alkaline phosphatase activity, Alizarin red, and Von Kossa) compared with the control group. All data indicated that autophagy played an important role in ASC differentiation on the PCL+FA scaffold. Inhibition of autophagy before day 3 strongly inhibited osteogenic differentiation and mineralization of ASCs in the 3-dimensional model. This observation further elucidates the mechanism of autophagy in mesenchymal stem cell osteogenic differentiation.</description><subject>Alkaline phosphatase</subject><subject>Ammonium chloride</subject><subject>Autophagy</subject><subject>Cell differentiation</subject><subject>Crystals</subject><subject>Data analysis</subject><subject>Dental pulp</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Ethanol</subject><subject>Experiments</subject><subject>Homeostasis</subject><subject>Kinases</subject><subject>Mesenchyme</subject><subject>Microscopy</subject><subject>Microtubule-associated protein 1</subject><subject>Mineralization</subject><subject>Osteogenesis</subject><subject>Osteopontin</subject><subject>Phagocytosis</subject><subject>Phosphatase</subject><subject>Polycaprolactone</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Quantitation</subject><subject>Scanning electron microscopy</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Tissue engineering</subject><issn>0022-0345</issn><issn>1544-0591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7vnqTgxUv1JWnS5jiG8wcbHtRzSdJ0dnRNTdrD_OvN6FQYCIFHeJ_v9733RegSwy3GaXoHQAjQhGHOKc8YOUJjzJIkBibwMRrv2vGuP0Jn3q8BsCAZPUUjwgXHiYAxep72nW0_5GobLW3R17IzPpqZuo6WVWOcrKsv2VW2icKb1711sg3_zsSBrsrKFNGrlmVp68Kfo5NS1t5c7OsEvc_v32aP8eLl4Wk2XcSactbFgobppTIYUqGCVqss4UBAhiuKjEqRGK2IwkYUWhXMSE4oY1IxzDShQtMJuhl8W2c_e-O7fFN5HVaWjbG9z3FGOGdpODag1wfo2vauCdvlhAJwAhlNAgUDpZ313pkyb121kW6bY8h3OeeHOQfJ1d64VxtT_Ap-gg1APABerszf1H8NvwF0G4QR</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Li, Y.</creator><creator>Guo, T.</creator><creator>Zhang, Z.</creator><creator>Yao, Y.</creator><creator>Chang, S.</creator><creator>Nör, J.E.</creator><creator>Clarkson, B.H.</creator><creator>Ni, L.</creator><creator>Liu, J.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>U9A</scope><scope>7X8</scope></search><sort><creationdate>201606</creationdate><title>Autophagy Modulates Cell Mineralization on Fluorapatite-Modified Scaffolds</title><author>Li, Y. ; Guo, T. ; Zhang, Z. ; Yao, Y. ; Chang, S. ; Nör, J.E. ; Clarkson, B.H. ; Ni, L. ; Liu, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-93269fbe1079bcafcb846020a516d83a94ecb2b1e9dcbd5ea62355ab515c239c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alkaline phosphatase</topic><topic>Ammonium chloride</topic><topic>Autophagy</topic><topic>Cell differentiation</topic><topic>Crystals</topic><topic>Data analysis</topic><topic>Dental pulp</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Ethanol</topic><topic>Experiments</topic><topic>Homeostasis</topic><topic>Kinases</topic><topic>Mesenchyme</topic><topic>Microscopy</topic><topic>Microtubule-associated protein 1</topic><topic>Mineralization</topic><topic>Osteogenesis</topic><topic>Osteopontin</topic><topic>Phagocytosis</topic><topic>Phosphatase</topic><topic>Polycaprolactone</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Quantitation</topic><topic>Scanning electron microscopy</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Guo, T.</creatorcontrib><creatorcontrib>Zhang, Z.</creatorcontrib><creatorcontrib>Yao, Y.</creatorcontrib><creatorcontrib>Chang, S.</creatorcontrib><creatorcontrib>Nör, J.E.</creatorcontrib><creatorcontrib>Clarkson, B.H.</creatorcontrib><creatorcontrib>Ni, L.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of dental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Y.</au><au>Guo, T.</au><au>Zhang, Z.</au><au>Yao, Y.</au><au>Chang, S.</au><au>Nör, J.E.</au><au>Clarkson, B.H.</au><au>Ni, L.</au><au>Liu, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy Modulates Cell Mineralization on Fluorapatite-Modified Scaffolds</atitle><jtitle>Journal of dental research</jtitle><addtitle>J Dent Res</addtitle><date>2016-06</date><risdate>2016</risdate><volume>95</volume><issue>6</issue><spage>650</spage><epage>656</epage><pages>650-656</pages><issn>0022-0345</issn><eissn>1544-0591</eissn><abstract>As a major intracellular degradation and recycling machinery, autophagy plays an important role in maintaining cellular homeostasis and remodeling during normal development. Our previous study showed that fluorapatite (FA) crystal-coated electrospun polycaprolactone (PCL) was capable of inducing differentiation and mineralization of human dental pulp stem cells. However, how autophagy changes and whether autophagy plays a vital role during these processes is still unknown. In this study, we seeded STEMPRO human adipose-derived stem cells (ASCs) on both PCL+FA and PCL scaffolds to investigate the osteogenic inductive ability of FA crystals and we observed the autophagy changes of these cells. Scanning electron microscopy and fluorescence microscopy images, along with DNA quantitation, showed that both PCL+FA and PCL scaffolds could sustain ASC growth but only the PCL+FA scaffold could sustain cell mineralization. This was confirmed by alkaline phosphatase activity and Alizarin red and Von Kossa staining results. The autophagy RT2 Profiler polymerase chain reaction array analysis showed many autophagy-related genes changes during ASC differentiation. Western blot analysis indicated that several autophagy-related proteins fluctuated during the procedure. Among them, the microtubule-associated protein 1 light chain 3 (LC3)-II protein changes of the ASCs grown on the 2- or 3-dimensional environments at 6 h, 12 h, 1 d, 3 d, 7 d, 14 d, and 21 d reached a peak value at day 7 during osteogenesis. At earlier stages (from day 0 to day 3), the addition of autophagy inhibitors (3-mathyladenine, bafilomycin A1, and NH4Cl) attenuated the expression of osteogenic related markers (osteopontin, alkaline phosphatase activity, Alizarin red, and Von Kossa) compared with the control group. All data indicated that autophagy played an important role in ASC differentiation on the PCL+FA scaffold. Inhibition of autophagy before day 3 strongly inhibited osteogenic differentiation and mineralization of ASCs in the 3-dimensional model. This observation further elucidates the mechanism of autophagy in mesenchymal stem cell osteogenic differentiation.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>26961490</pmid><doi>10.1177/0022034516636852</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0345
ispartof Journal of dental research, 2016-06, Vol.95 (6), p.650-656
issn 0022-0345
1544-0591
language eng
recordid cdi_proquest_miscellaneous_1826657019
source SAGE Complete; Alma/SFX Local Collection
subjects Alkaline phosphatase
Ammonium chloride
Autophagy
Cell differentiation
Crystals
Data analysis
Dental pulp
Deoxyribonucleic acid
DNA
Ethanol
Experiments
Homeostasis
Kinases
Mesenchyme
Microscopy
Microtubule-associated protein 1
Mineralization
Osteogenesis
Osteopontin
Phagocytosis
Phosphatase
Polycaprolactone
Polymerase chain reaction
Proteins
Quantitation
Scanning electron microscopy
Stem cells
Studies
Tissue engineering
title Autophagy Modulates Cell Mineralization on Fluorapatite-Modified Scaffolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy%20Modulates%20Cell%20Mineralization%20on%20Fluorapatite-Modified%20Scaffolds&rft.jtitle=Journal%20of%20dental%20research&rft.au=Li,%20Y.&rft.date=2016-06&rft.volume=95&rft.issue=6&rft.spage=650&rft.epage=656&rft.pages=650-656&rft.issn=0022-0345&rft.eissn=1544-0591&rft_id=info:doi/10.1177/0022034516636852&rft_dat=%3Cproquest_cross%3E2300620834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300620834&rft_id=info:pmid/26961490&rft_sage_id=10.1177_0022034516636852&rfr_iscdi=true