Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment

ABSTRACT Calcium phosphate ceramics with submicron‐scaled surface structure can trigger bone formation in non‐osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron‐scaled surface structure (TCP‐S) or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of orthopaedic research 2016-11, Vol.34 (11), p.1865-1873
Hauptverfasser: Duan, Rongquan, Barbieri, Davide, Luo, Xiaoman, Weng, Jie, de Bruijn, Joost D., Yuan, Huipin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1873
container_issue 11
container_start_page 1865
container_title Journal of orthopaedic research
container_volume 34
creator Duan, Rongquan
Barbieri, Davide
Luo, Xiaoman
Weng, Jie
de Bruijn, Joost D.
Yuan, Huipin
description ABSTRACT Calcium phosphate ceramics with submicron‐scaled surface structure can trigger bone formation in non‐osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron‐scaled surface structure (TCP‐S) or a micron‐scaled one (TCP‐B) were prepared and characterized regarding their physicochemical properties. Granules (size 1–2 mm) of both materials were implanted on either left or right side of spinous process, between the two lumbar vertebrae (L3‐L4), and in paraspinal muscle of eight beagles. After 12 weeks of implantation, ectopic bone was observed in muscle in TCP‐S explants (7.7 ± 3.7%), confirming their ability to inductively form bone in non‐osseous sites. In contrast, TCP‐B implants did not lead to bone formation in muscle. Abundant bone (34.1 ± 6.6%) was formed within TCP‐S implants beside the two spinous processes, while limited bone (5.1 ± 4.5%) was seen in TCP‐B. Furthermore, the material resorption of TCP‐S was more pronounced than that of TCP‐B in both the muscle and spine environments. The results herein indicate that the submicron‐scaled surface structured tricalcium phosphate ceramic could enhance bone regeneration as compared to the micron‐scaled one in spine environment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1865–1873, 2016.
doi_str_mv 10.1002/jor.23201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826655974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826655974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3981-67f3822034adea26e1311a177227d0500cbba718725ff0cfbfc9c2e47e3e4ca33</originalsourceid><addsrcrecordid>eNp1kEtP3DAURi1UBMNjwR-ovCyLMH7EdmaJKI9WA6i0CHaW47npGBIntR3o_PsaBth1cy1dn--70kHogJIjSgibPvThiHFG6AaaUCHKQjB1_wlNiOKyIEzKbbQT4wMhRFFWbaFtJquZlKWYoPRzrDtnQ--LOIbGWMAxhdGmMcACp-Csaa0bOzws-zgsTQJsIZgcweCXxluIOC0B170HHOA3-PybXO-x89ga7_I6Di8T_JPLZzrwaQ9tNqaNsP_27qLbs9NfJxfF_Pr828nxvLB8VtFCqoZXjBFemgUYJoFySg1VijG1IIIQW9dG0Uox0TTENnVjZ5ZBqYBDaQ3nu-jLuncI_Z8RYtKdixba1njox6hpld0IMVNlRg_XaFYRY4BGD8F1Jqw0JfpFss6S9avkzH5-q83uYPFBvlvNwHQNPLsWVv9v0t-vb94ri3XCxQR_PxImPGqpuBL67upcX959FXN5QfQP_g8U5Jgh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826655974</pqid></control><display><type>article</type><title>Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><creator>Duan, Rongquan ; Barbieri, Davide ; Luo, Xiaoman ; Weng, Jie ; de Bruijn, Joost D. ; Yuan, Huipin</creator><creatorcontrib>Duan, Rongquan ; Barbieri, Davide ; Luo, Xiaoman ; Weng, Jie ; de Bruijn, Joost D. ; Yuan, Huipin</creatorcontrib><description>ABSTRACT Calcium phosphate ceramics with submicron‐scaled surface structure can trigger bone formation in non‐osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron‐scaled surface structure (TCP‐S) or a micron‐scaled one (TCP‐B) were prepared and characterized regarding their physicochemical properties. Granules (size 1–2 mm) of both materials were implanted on either left or right side of spinous process, between the two lumbar vertebrae (L3‐L4), and in paraspinal muscle of eight beagles. After 12 weeks of implantation, ectopic bone was observed in muscle in TCP‐S explants (7.7 ± 3.7%), confirming their ability to inductively form bone in non‐osseous sites. In contrast, TCP‐B implants did not lead to bone formation in muscle. Abundant bone (34.1 ± 6.6%) was formed within TCP‐S implants beside the two spinous processes, while limited bone (5.1 ± 4.5%) was seen in TCP‐B. Furthermore, the material resorption of TCP‐S was more pronounced than that of TCP‐B in both the muscle and spine environments. The results herein indicate that the submicron‐scaled surface structured tricalcium phosphate ceramic could enhance bone regeneration as compared to the micron‐scaled one in spine environment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1865–1873, 2016.</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.23201</identifier><identifier>PMID: 26896645</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; bone regeneration ; Bone Regeneration - drug effects ; bone substitutes ; calcium phosphate ceramics ; Calcium Phosphates - pharmacology ; Calcium Phosphates - therapeutic use ; Ceramics - chemistry ; Dogs ; Male ; Prostheses and Implants ; Spinal Diseases - therapy ; Spine ; submicron-scaled surface structure</subject><ispartof>Journal of orthopaedic research, 2016-11, Vol.34 (11), p.1865-1873</ispartof><rights>2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3981-67f3822034adea26e1311a177227d0500cbba718725ff0cfbfc9c2e47e3e4ca33</citedby><cites>FETCH-LOGICAL-c3981-67f3822034adea26e1311a177227d0500cbba718725ff0cfbfc9c2e47e3e4ca33</cites><orcidid>0000-0003-0728-8337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.23201$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.23201$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26896645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Rongquan</creatorcontrib><creatorcontrib>Barbieri, Davide</creatorcontrib><creatorcontrib>Luo, Xiaoman</creatorcontrib><creatorcontrib>Weng, Jie</creatorcontrib><creatorcontrib>de Bruijn, Joost D.</creatorcontrib><creatorcontrib>Yuan, Huipin</creatorcontrib><title>Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment</title><title>Journal of orthopaedic research</title><addtitle>J. Orthop. Res</addtitle><description>ABSTRACT Calcium phosphate ceramics with submicron‐scaled surface structure can trigger bone formation in non‐osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron‐scaled surface structure (TCP‐S) or a micron‐scaled one (TCP‐B) were prepared and characterized regarding their physicochemical properties. Granules (size 1–2 mm) of both materials were implanted on either left or right side of spinous process, between the two lumbar vertebrae (L3‐L4), and in paraspinal muscle of eight beagles. After 12 weeks of implantation, ectopic bone was observed in muscle in TCP‐S explants (7.7 ± 3.7%), confirming their ability to inductively form bone in non‐osseous sites. In contrast, TCP‐B implants did not lead to bone formation in muscle. Abundant bone (34.1 ± 6.6%) was formed within TCP‐S implants beside the two spinous processes, while limited bone (5.1 ± 4.5%) was seen in TCP‐B. Furthermore, the material resorption of TCP‐S was more pronounced than that of TCP‐B in both the muscle and spine environments. The results herein indicate that the submicron‐scaled surface structured tricalcium phosphate ceramic could enhance bone regeneration as compared to the micron‐scaled one in spine environment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1865–1873, 2016.</description><subject>Animals</subject><subject>bone regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>bone substitutes</subject><subject>calcium phosphate ceramics</subject><subject>Calcium Phosphates - pharmacology</subject><subject>Calcium Phosphates - therapeutic use</subject><subject>Ceramics - chemistry</subject><subject>Dogs</subject><subject>Male</subject><subject>Prostheses and Implants</subject><subject>Spinal Diseases - therapy</subject><subject>Spine</subject><subject>submicron-scaled surface structure</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtP3DAURi1UBMNjwR-ovCyLMH7EdmaJKI9WA6i0CHaW47npGBIntR3o_PsaBth1cy1dn--70kHogJIjSgibPvThiHFG6AaaUCHKQjB1_wlNiOKyIEzKbbQT4wMhRFFWbaFtJquZlKWYoPRzrDtnQ--LOIbGWMAxhdGmMcACp-Csaa0bOzws-zgsTQJsIZgcweCXxluIOC0B170HHOA3-PybXO-x89ga7_I6Di8T_JPLZzrwaQ9tNqaNsP_27qLbs9NfJxfF_Pr828nxvLB8VtFCqoZXjBFemgUYJoFySg1VijG1IIIQW9dG0Uox0TTENnVjZ5ZBqYBDaQ3nu-jLuncI_Z8RYtKdixba1njox6hpld0IMVNlRg_XaFYRY4BGD8F1Jqw0JfpFss6S9avkzH5-q83uYPFBvlvNwHQNPLsWVv9v0t-vb94ri3XCxQR_PxImPGqpuBL67upcX959FXN5QfQP_g8U5Jgh</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Duan, Rongquan</creator><creator>Barbieri, Davide</creator><creator>Luo, Xiaoman</creator><creator>Weng, Jie</creator><creator>de Bruijn, Joost D.</creator><creator>Yuan, Huipin</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0728-8337</orcidid></search><sort><creationdate>201611</creationdate><title>Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment</title><author>Duan, Rongquan ; Barbieri, Davide ; Luo, Xiaoman ; Weng, Jie ; de Bruijn, Joost D. ; Yuan, Huipin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3981-67f3822034adea26e1311a177227d0500cbba718725ff0cfbfc9c2e47e3e4ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>bone regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>bone substitutes</topic><topic>calcium phosphate ceramics</topic><topic>Calcium Phosphates - pharmacology</topic><topic>Calcium Phosphates - therapeutic use</topic><topic>Ceramics - chemistry</topic><topic>Dogs</topic><topic>Male</topic><topic>Prostheses and Implants</topic><topic>Spinal Diseases - therapy</topic><topic>Spine</topic><topic>submicron-scaled surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Rongquan</creatorcontrib><creatorcontrib>Barbieri, Davide</creatorcontrib><creatorcontrib>Luo, Xiaoman</creatorcontrib><creatorcontrib>Weng, Jie</creatorcontrib><creatorcontrib>de Bruijn, Joost D.</creatorcontrib><creatorcontrib>Yuan, Huipin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Rongquan</au><au>Barbieri, Davide</au><au>Luo, Xiaoman</au><au>Weng, Jie</au><au>de Bruijn, Joost D.</au><au>Yuan, Huipin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J. Orthop. Res</addtitle><date>2016-11</date><risdate>2016</risdate><volume>34</volume><issue>11</issue><spage>1865</spage><epage>1873</epage><pages>1865-1873</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>ABSTRACT Calcium phosphate ceramics with submicron‐scaled surface structure can trigger bone formation in non‐osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron‐scaled surface structure (TCP‐S) or a micron‐scaled one (TCP‐B) were prepared and characterized regarding their physicochemical properties. Granules (size 1–2 mm) of both materials were implanted on either left or right side of spinous process, between the two lumbar vertebrae (L3‐L4), and in paraspinal muscle of eight beagles. After 12 weeks of implantation, ectopic bone was observed in muscle in TCP‐S explants (7.7 ± 3.7%), confirming their ability to inductively form bone in non‐osseous sites. In contrast, TCP‐B implants did not lead to bone formation in muscle. Abundant bone (34.1 ± 6.6%) was formed within TCP‐S implants beside the two spinous processes, while limited bone (5.1 ± 4.5%) was seen in TCP‐B. Furthermore, the material resorption of TCP‐S was more pronounced than that of TCP‐B in both the muscle and spine environments. The results herein indicate that the submicron‐scaled surface structured tricalcium phosphate ceramic could enhance bone regeneration as compared to the micron‐scaled one in spine environment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1865–1873, 2016.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26896645</pmid><doi>10.1002/jor.23201</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0728-8337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0736-0266
ispartof Journal of orthopaedic research, 2016-11, Vol.34 (11), p.1865-1873
issn 0736-0266
1554-527X
language eng
recordid cdi_proquest_miscellaneous_1826655974
source MEDLINE; Wiley Journals; Wiley Online Library Free Content
subjects Animals
bone regeneration
Bone Regeneration - drug effects
bone substitutes
calcium phosphate ceramics
Calcium Phosphates - pharmacology
Calcium Phosphates - therapeutic use
Ceramics - chemistry
Dogs
Male
Prostheses and Implants
Spinal Diseases - therapy
Spine
submicron-scaled surface structure
title Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Submicron-surface%20structured%20tricalcium%20phosphate%20ceramic%20enhances%20the%20bone%20regeneration%20in%20canine%20spine%20environment&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Duan,%20Rongquan&rft.date=2016-11&rft.volume=34&rft.issue=11&rft.spage=1865&rft.epage=1873&rft.pages=1865-1873&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.23201&rft_dat=%3Cproquest_cross%3E1826655974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826655974&rft_id=info:pmid/26896645&rfr_iscdi=true