Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment
ABSTRACT Calcium phosphate ceramics with submicron‐scaled surface structure can trigger bone formation in non‐osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron‐scaled surface structure (TCP‐S) or...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic research 2016-11, Vol.34 (11), p.1865-1873 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1873 |
---|---|
container_issue | 11 |
container_start_page | 1865 |
container_title | Journal of orthopaedic research |
container_volume | 34 |
creator | Duan, Rongquan Barbieri, Davide Luo, Xiaoman Weng, Jie de Bruijn, Joost D. Yuan, Huipin |
description | ABSTRACT
Calcium phosphate ceramics with submicron‐scaled surface structure can trigger bone formation in non‐osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron‐scaled surface structure (TCP‐S) or a micron‐scaled one (TCP‐B) were prepared and characterized regarding their physicochemical properties. Granules (size 1–2 mm) of both materials were implanted on either left or right side of spinous process, between the two lumbar vertebrae (L3‐L4), and in paraspinal muscle of eight beagles. After 12 weeks of implantation, ectopic bone was observed in muscle in TCP‐S explants (7.7 ± 3.7%), confirming their ability to inductively form bone in non‐osseous sites. In contrast, TCP‐B implants did not lead to bone formation in muscle. Abundant bone (34.1 ± 6.6%) was formed within TCP‐S implants beside the two spinous processes, while limited bone (5.1 ± 4.5%) was seen in TCP‐B. Furthermore, the material resorption of TCP‐S was more pronounced than that of TCP‐B in both the muscle and spine environments. The results herein indicate that the submicron‐scaled surface structured tricalcium phosphate ceramic could enhance bone regeneration as compared to the micron‐scaled one in spine environment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1865–1873, 2016. |
doi_str_mv | 10.1002/jor.23201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826655974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826655974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3981-67f3822034adea26e1311a177227d0500cbba718725ff0cfbfc9c2e47e3e4ca33</originalsourceid><addsrcrecordid>eNp1kEtP3DAURi1UBMNjwR-ovCyLMH7EdmaJKI9WA6i0CHaW47npGBIntR3o_PsaBth1cy1dn--70kHogJIjSgibPvThiHFG6AaaUCHKQjB1_wlNiOKyIEzKbbQT4wMhRFFWbaFtJquZlKWYoPRzrDtnQ--LOIbGWMAxhdGmMcACp-Csaa0bOzws-zgsTQJsIZgcweCXxluIOC0B170HHOA3-PybXO-x89ga7_I6Di8T_JPLZzrwaQ9tNqaNsP_27qLbs9NfJxfF_Pr828nxvLB8VtFCqoZXjBFemgUYJoFySg1VijG1IIIQW9dG0Uox0TTENnVjZ5ZBqYBDaQ3nu-jLuncI_Z8RYtKdixba1njox6hpld0IMVNlRg_XaFYRY4BGD8F1Jqw0JfpFss6S9avkzH5-q83uYPFBvlvNwHQNPLsWVv9v0t-vb94ri3XCxQR_PxImPGqpuBL67upcX959FXN5QfQP_g8U5Jgh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826655974</pqid></control><display><type>article</type><title>Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><creator>Duan, Rongquan ; Barbieri, Davide ; Luo, Xiaoman ; Weng, Jie ; de Bruijn, Joost D. ; Yuan, Huipin</creator><creatorcontrib>Duan, Rongquan ; Barbieri, Davide ; Luo, Xiaoman ; Weng, Jie ; de Bruijn, Joost D. ; Yuan, Huipin</creatorcontrib><description>ABSTRACT
Calcium phosphate ceramics with submicron‐scaled surface structure can trigger bone formation in non‐osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron‐scaled surface structure (TCP‐S) or a micron‐scaled one (TCP‐B) were prepared and characterized regarding their physicochemical properties. Granules (size 1–2 mm) of both materials were implanted on either left or right side of spinous process, between the two lumbar vertebrae (L3‐L4), and in paraspinal muscle of eight beagles. After 12 weeks of implantation, ectopic bone was observed in muscle in TCP‐S explants (7.7 ± 3.7%), confirming their ability to inductively form bone in non‐osseous sites. In contrast, TCP‐B implants did not lead to bone formation in muscle. Abundant bone (34.1 ± 6.6%) was formed within TCP‐S implants beside the two spinous processes, while limited bone (5.1 ± 4.5%) was seen in TCP‐B. Furthermore, the material resorption of TCP‐S was more pronounced than that of TCP‐B in both the muscle and spine environments. The results herein indicate that the submicron‐scaled surface structured tricalcium phosphate ceramic could enhance bone regeneration as compared to the micron‐scaled one in spine environment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1865–1873, 2016.</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.23201</identifier><identifier>PMID: 26896645</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; bone regeneration ; Bone Regeneration - drug effects ; bone substitutes ; calcium phosphate ceramics ; Calcium Phosphates - pharmacology ; Calcium Phosphates - therapeutic use ; Ceramics - chemistry ; Dogs ; Male ; Prostheses and Implants ; Spinal Diseases - therapy ; Spine ; submicron-scaled surface structure</subject><ispartof>Journal of orthopaedic research, 2016-11, Vol.34 (11), p.1865-1873</ispartof><rights>2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3981-67f3822034adea26e1311a177227d0500cbba718725ff0cfbfc9c2e47e3e4ca33</citedby><cites>FETCH-LOGICAL-c3981-67f3822034adea26e1311a177227d0500cbba718725ff0cfbfc9c2e47e3e4ca33</cites><orcidid>0000-0003-0728-8337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.23201$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.23201$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26896645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Rongquan</creatorcontrib><creatorcontrib>Barbieri, Davide</creatorcontrib><creatorcontrib>Luo, Xiaoman</creatorcontrib><creatorcontrib>Weng, Jie</creatorcontrib><creatorcontrib>de Bruijn, Joost D.</creatorcontrib><creatorcontrib>Yuan, Huipin</creatorcontrib><title>Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment</title><title>Journal of orthopaedic research</title><addtitle>J. Orthop. Res</addtitle><description>ABSTRACT
Calcium phosphate ceramics with submicron‐scaled surface structure can trigger bone formation in non‐osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron‐scaled surface structure (TCP‐S) or a micron‐scaled one (TCP‐B) were prepared and characterized regarding their physicochemical properties. Granules (size 1–2 mm) of both materials were implanted on either left or right side of spinous process, between the two lumbar vertebrae (L3‐L4), and in paraspinal muscle of eight beagles. After 12 weeks of implantation, ectopic bone was observed in muscle in TCP‐S explants (7.7 ± 3.7%), confirming their ability to inductively form bone in non‐osseous sites. In contrast, TCP‐B implants did not lead to bone formation in muscle. Abundant bone (34.1 ± 6.6%) was formed within TCP‐S implants beside the two spinous processes, while limited bone (5.1 ± 4.5%) was seen in TCP‐B. Furthermore, the material resorption of TCP‐S was more pronounced than that of TCP‐B in both the muscle and spine environments. The results herein indicate that the submicron‐scaled surface structured tricalcium phosphate ceramic could enhance bone regeneration as compared to the micron‐scaled one in spine environment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1865–1873, 2016.</description><subject>Animals</subject><subject>bone regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>bone substitutes</subject><subject>calcium phosphate ceramics</subject><subject>Calcium Phosphates - pharmacology</subject><subject>Calcium Phosphates - therapeutic use</subject><subject>Ceramics - chemistry</subject><subject>Dogs</subject><subject>Male</subject><subject>Prostheses and Implants</subject><subject>Spinal Diseases - therapy</subject><subject>Spine</subject><subject>submicron-scaled surface structure</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtP3DAURi1UBMNjwR-ovCyLMH7EdmaJKI9WA6i0CHaW47npGBIntR3o_PsaBth1cy1dn--70kHogJIjSgibPvThiHFG6AaaUCHKQjB1_wlNiOKyIEzKbbQT4wMhRFFWbaFtJquZlKWYoPRzrDtnQ--LOIbGWMAxhdGmMcACp-Csaa0bOzws-zgsTQJsIZgcweCXxluIOC0B170HHOA3-PybXO-x89ga7_I6Di8T_JPLZzrwaQ9tNqaNsP_27qLbs9NfJxfF_Pr828nxvLB8VtFCqoZXjBFemgUYJoFySg1VijG1IIIQW9dG0Uox0TTENnVjZ5ZBqYBDaQ3nu-jLuncI_Z8RYtKdixba1njox6hpld0IMVNlRg_XaFYRY4BGD8F1Jqw0JfpFss6S9avkzH5-q83uYPFBvlvNwHQNPLsWVv9v0t-vb94ri3XCxQR_PxImPGqpuBL67upcX959FXN5QfQP_g8U5Jgh</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Duan, Rongquan</creator><creator>Barbieri, Davide</creator><creator>Luo, Xiaoman</creator><creator>Weng, Jie</creator><creator>de Bruijn, Joost D.</creator><creator>Yuan, Huipin</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0728-8337</orcidid></search><sort><creationdate>201611</creationdate><title>Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment</title><author>Duan, Rongquan ; Barbieri, Davide ; Luo, Xiaoman ; Weng, Jie ; de Bruijn, Joost D. ; Yuan, Huipin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3981-67f3822034adea26e1311a177227d0500cbba718725ff0cfbfc9c2e47e3e4ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>bone regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>bone substitutes</topic><topic>calcium phosphate ceramics</topic><topic>Calcium Phosphates - pharmacology</topic><topic>Calcium Phosphates - therapeutic use</topic><topic>Ceramics - chemistry</topic><topic>Dogs</topic><topic>Male</topic><topic>Prostheses and Implants</topic><topic>Spinal Diseases - therapy</topic><topic>Spine</topic><topic>submicron-scaled surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Rongquan</creatorcontrib><creatorcontrib>Barbieri, Davide</creatorcontrib><creatorcontrib>Luo, Xiaoman</creatorcontrib><creatorcontrib>Weng, Jie</creatorcontrib><creatorcontrib>de Bruijn, Joost D.</creatorcontrib><creatorcontrib>Yuan, Huipin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Rongquan</au><au>Barbieri, Davide</au><au>Luo, Xiaoman</au><au>Weng, Jie</au><au>de Bruijn, Joost D.</au><au>Yuan, Huipin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J. Orthop. Res</addtitle><date>2016-11</date><risdate>2016</risdate><volume>34</volume><issue>11</issue><spage>1865</spage><epage>1873</epage><pages>1865-1873</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>ABSTRACT
Calcium phosphate ceramics with submicron‐scaled surface structure can trigger bone formation in non‐osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron‐scaled surface structure (TCP‐S) or a micron‐scaled one (TCP‐B) were prepared and characterized regarding their physicochemical properties. Granules (size 1–2 mm) of both materials were implanted on either left or right side of spinous process, between the two lumbar vertebrae (L3‐L4), and in paraspinal muscle of eight beagles. After 12 weeks of implantation, ectopic bone was observed in muscle in TCP‐S explants (7.7 ± 3.7%), confirming their ability to inductively form bone in non‐osseous sites. In contrast, TCP‐B implants did not lead to bone formation in muscle. Abundant bone (34.1 ± 6.6%) was formed within TCP‐S implants beside the two spinous processes, while limited bone (5.1 ± 4.5%) was seen in TCP‐B. Furthermore, the material resorption of TCP‐S was more pronounced than that of TCP‐B in both the muscle and spine environments. The results herein indicate that the submicron‐scaled surface structured tricalcium phosphate ceramic could enhance bone regeneration as compared to the micron‐scaled one in spine environment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1865–1873, 2016.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26896645</pmid><doi>10.1002/jor.23201</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0728-8337</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0736-0266 |
ispartof | Journal of orthopaedic research, 2016-11, Vol.34 (11), p.1865-1873 |
issn | 0736-0266 1554-527X |
language | eng |
recordid | cdi_proquest_miscellaneous_1826655974 |
source | MEDLINE; Wiley Journals; Wiley Online Library Free Content |
subjects | Animals bone regeneration Bone Regeneration - drug effects bone substitutes calcium phosphate ceramics Calcium Phosphates - pharmacology Calcium Phosphates - therapeutic use Ceramics - chemistry Dogs Male Prostheses and Implants Spinal Diseases - therapy Spine submicron-scaled surface structure |
title | Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Submicron-surface%20structured%20tricalcium%20phosphate%20ceramic%20enhances%20the%20bone%20regeneration%20in%20canine%20spine%20environment&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Duan,%20Rongquan&rft.date=2016-11&rft.volume=34&rft.issue=11&rft.spage=1865&rft.epage=1873&rft.pages=1865-1873&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.23201&rft_dat=%3Cproquest_cross%3E1826655974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826655974&rft_id=info:pmid/26896645&rfr_iscdi=true |