Landslide Displacement Prediction With Uncertainty Based on Neural Networks With Random Hidden Weights
In this paper, we propose a new approach to establish a landslide displacement forecasting model based on artificial neural networks (ANNs) with random hidden weights. To quantify the uncertainty associated with the predictions, a framework for probabilistic forecasting of landslide displacement is...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2016-12, Vol.27 (12), p.2683-2695 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2695 |
---|---|
container_issue | 12 |
container_start_page | 2683 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 27 |
creator | Cheng Lian Zhigang Zeng Wei Yao Huiming Tang Chen, Chun Lung Philip |
description | In this paper, we propose a new approach to establish a landslide displacement forecasting model based on artificial neural networks (ANNs) with random hidden weights. To quantify the uncertainty associated with the predictions, a framework for probabilistic forecasting of landslide displacement is developed. The aim of this paper is to construct prediction intervals (PIs) instead of deterministic forecasting. A lower-upper bound estimation (LUBE) method is adopted to construct ANN-based PIs, while a new single hidden layer feedforward ANN with random hidden weights for LUBE is proposed. Unlike the original implementation of LUBE, the input weights and hidden biases of the ANN are randomly chosen, and only the output weights need to be adjusted. Combining particle swarm optimization (PSO) and gravitational search algorithm (GSA), a hybrid evolutionary algorithm, PSOGSA, is utilized to optimize the output weights. Furthermore, a new ANN objective function, which combines a modified combinational coverage width-based criterion with one-norm regularization, is proposed. Two benchmark data sets and two real-world landslide data sets are presented to illustrate the capability and merit of our method. Experimental results reveal that the proposed method can construct high-quality PIs. |
doi_str_mv | 10.1109/TNNLS.2015.2512283 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826644784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7377106</ieee_id><sourcerecordid>1826644784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-f858b44e3b6cd75b19f55d70a4eed1b0617395db018c386769e54cb6cb4927453</originalsourceid><addsrcrecordid>eNpdkVtLJDEQhYOsqKh_wIWlYV98mTH3pB93XW8wjOIFfWvSSbVG-zKbpBH_vdEZ58F6qYL6zqGSg9ABwVNCcHl0O5_PbqYUEzGlglCq2QbaoUTSCWVa_1jP6mEb7cf4jHNJLCQvt9A2lUqSEqsd1MxM72LrHRT_fFy0xkIHfSquAjhvkx_64t6np-KutxCS8X16K_6aCK7ImzmMwbS5pdchvMQleZ0Nh644985BFoN_fEpxD202po2wv-q76O705Pb4fDK7PLs4_jObWCZImjRa6JpzYLW0TomalI0QTmHDARypsSSKlcLVmGjLdH5ECYLbDNe8pIoLtosOl76LMPwfIaaq89FC25oehjFWRFMpOVeaZ_T3N_R5GEOfr8sUp5QwLHCm6JKyYYgxQFMtgu9MeKsIrj6CqD6DqD6CqFZBZNGvlfVYd-DWkq9vz8DPJeABYL1WTCmCJXsHiwaL1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842213050</pqid></control><display><type>article</type><title>Landslide Displacement Prediction With Uncertainty Based on Neural Networks With Random Hidden Weights</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng Lian ; Zhigang Zeng ; Wei Yao ; Huiming Tang ; Chen, Chun Lung Philip</creator><creatorcontrib>Cheng Lian ; Zhigang Zeng ; Wei Yao ; Huiming Tang ; Chen, Chun Lung Philip</creatorcontrib><description>In this paper, we propose a new approach to establish a landslide displacement forecasting model based on artificial neural networks (ANNs) with random hidden weights. To quantify the uncertainty associated with the predictions, a framework for probabilistic forecasting of landslide displacement is developed. The aim of this paper is to construct prediction intervals (PIs) instead of deterministic forecasting. A lower-upper bound estimation (LUBE) method is adopted to construct ANN-based PIs, while a new single hidden layer feedforward ANN with random hidden weights for LUBE is proposed. Unlike the original implementation of LUBE, the input weights and hidden biases of the ANN are randomly chosen, and only the output weights need to be adjusted. Combining particle swarm optimization (PSO) and gravitational search algorithm (GSA), a hybrid evolutionary algorithm, PSOGSA, is utilized to optimize the output weights. Furthermore, a new ANN objective function, which combines a modified combinational coverage width-based criterion with one-norm regularization, is proposed. Two benchmark data sets and two real-world landslide data sets are presented to illustrate the capability and merit of our method. Experimental results reveal that the proposed method can construct high-quality PIs.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2015.2512283</identifier><identifier>PMID: 26761907</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Datasets ; Displacement ; Displacement prediction ; Estimation ; Evolutionary algorithms ; feedforward neural networks ; Forecasting ; Gravity ; landslide ; Landslides ; Neural networks ; Objective function ; Particle swarm optimization ; prediction interval (PI) ; Predictions ; Regularization ; Search algorithms ; Terrain factors ; Training ; Uncertainty ; Upper bounds</subject><ispartof>IEEE transaction on neural networks and learning systems, 2016-12, Vol.27 (12), p.2683-2695</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-f858b44e3b6cd75b19f55d70a4eed1b0617395db018c386769e54cb6cb4927453</citedby><cites>FETCH-LOGICAL-c351t-f858b44e3b6cd75b19f55d70a4eed1b0617395db018c386769e54cb6cb4927453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7377106$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7377106$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26761907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng Lian</creatorcontrib><creatorcontrib>Zhigang Zeng</creatorcontrib><creatorcontrib>Wei Yao</creatorcontrib><creatorcontrib>Huiming Tang</creatorcontrib><creatorcontrib>Chen, Chun Lung Philip</creatorcontrib><title>Landslide Displacement Prediction With Uncertainty Based on Neural Networks With Random Hidden Weights</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this paper, we propose a new approach to establish a landslide displacement forecasting model based on artificial neural networks (ANNs) with random hidden weights. To quantify the uncertainty associated with the predictions, a framework for probabilistic forecasting of landslide displacement is developed. The aim of this paper is to construct prediction intervals (PIs) instead of deterministic forecasting. A lower-upper bound estimation (LUBE) method is adopted to construct ANN-based PIs, while a new single hidden layer feedforward ANN with random hidden weights for LUBE is proposed. Unlike the original implementation of LUBE, the input weights and hidden biases of the ANN are randomly chosen, and only the output weights need to be adjusted. Combining particle swarm optimization (PSO) and gravitational search algorithm (GSA), a hybrid evolutionary algorithm, PSOGSA, is utilized to optimize the output weights. Furthermore, a new ANN objective function, which combines a modified combinational coverage width-based criterion with one-norm regularization, is proposed. Two benchmark data sets and two real-world landslide data sets are presented to illustrate the capability and merit of our method. Experimental results reveal that the proposed method can construct high-quality PIs.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Displacement</subject><subject>Displacement prediction</subject><subject>Estimation</subject><subject>Evolutionary algorithms</subject><subject>feedforward neural networks</subject><subject>Forecasting</subject><subject>Gravity</subject><subject>landslide</subject><subject>Landslides</subject><subject>Neural networks</subject><subject>Objective function</subject><subject>Particle swarm optimization</subject><subject>prediction interval (PI)</subject><subject>Predictions</subject><subject>Regularization</subject><subject>Search algorithms</subject><subject>Terrain factors</subject><subject>Training</subject><subject>Uncertainty</subject><subject>Upper bounds</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkVtLJDEQhYOsqKh_wIWlYV98mTH3pB93XW8wjOIFfWvSSbVG-zKbpBH_vdEZ58F6qYL6zqGSg9ABwVNCcHl0O5_PbqYUEzGlglCq2QbaoUTSCWVa_1jP6mEb7cf4jHNJLCQvt9A2lUqSEqsd1MxM72LrHRT_fFy0xkIHfSquAjhvkx_64t6np-KutxCS8X16K_6aCK7ImzmMwbS5pdchvMQleZ0Nh644985BFoN_fEpxD202po2wv-q76O705Pb4fDK7PLs4_jObWCZImjRa6JpzYLW0TomalI0QTmHDARypsSSKlcLVmGjLdH5ECYLbDNe8pIoLtosOl76LMPwfIaaq89FC25oehjFWRFMpOVeaZ_T3N_R5GEOfr8sUp5QwLHCm6JKyYYgxQFMtgu9MeKsIrj6CqD6DqD6CqFZBZNGvlfVYd-DWkq9vz8DPJeABYL1WTCmCJXsHiwaL1A</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Cheng Lian</creator><creator>Zhigang Zeng</creator><creator>Wei Yao</creator><creator>Huiming Tang</creator><creator>Chen, Chun Lung Philip</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201612</creationdate><title>Landslide Displacement Prediction With Uncertainty Based on Neural Networks With Random Hidden Weights</title><author>Cheng Lian ; Zhigang Zeng ; Wei Yao ; Huiming Tang ; Chen, Chun Lung Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-f858b44e3b6cd75b19f55d70a4eed1b0617395db018c386769e54cb6cb4927453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Displacement</topic><topic>Displacement prediction</topic><topic>Estimation</topic><topic>Evolutionary algorithms</topic><topic>feedforward neural networks</topic><topic>Forecasting</topic><topic>Gravity</topic><topic>landslide</topic><topic>Landslides</topic><topic>Neural networks</topic><topic>Objective function</topic><topic>Particle swarm optimization</topic><topic>prediction interval (PI)</topic><topic>Predictions</topic><topic>Regularization</topic><topic>Search algorithms</topic><topic>Terrain factors</topic><topic>Training</topic><topic>Uncertainty</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng Lian</creatorcontrib><creatorcontrib>Zhigang Zeng</creatorcontrib><creatorcontrib>Wei Yao</creatorcontrib><creatorcontrib>Huiming Tang</creatorcontrib><creatorcontrib>Chen, Chun Lung Philip</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng Lian</au><au>Zhigang Zeng</au><au>Wei Yao</au><au>Huiming Tang</au><au>Chen, Chun Lung Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landslide Displacement Prediction With Uncertainty Based on Neural Networks With Random Hidden Weights</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2016-12</date><risdate>2016</risdate><volume>27</volume><issue>12</issue><spage>2683</spage><epage>2695</epage><pages>2683-2695</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this paper, we propose a new approach to establish a landslide displacement forecasting model based on artificial neural networks (ANNs) with random hidden weights. To quantify the uncertainty associated with the predictions, a framework for probabilistic forecasting of landslide displacement is developed. The aim of this paper is to construct prediction intervals (PIs) instead of deterministic forecasting. A lower-upper bound estimation (LUBE) method is adopted to construct ANN-based PIs, while a new single hidden layer feedforward ANN with random hidden weights for LUBE is proposed. Unlike the original implementation of LUBE, the input weights and hidden biases of the ANN are randomly chosen, and only the output weights need to be adjusted. Combining particle swarm optimization (PSO) and gravitational search algorithm (GSA), a hybrid evolutionary algorithm, PSOGSA, is utilized to optimize the output weights. Furthermore, a new ANN objective function, which combines a modified combinational coverage width-based criterion with one-norm regularization, is proposed. Two benchmark data sets and two real-world landslide data sets are presented to illustrate the capability and merit of our method. Experimental results reveal that the proposed method can construct high-quality PIs.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26761907</pmid><doi>10.1109/TNNLS.2015.2512283</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2016-12, Vol.27 (12), p.2683-2695 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826644784 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Datasets Displacement Displacement prediction Estimation Evolutionary algorithms feedforward neural networks Forecasting Gravity landslide Landslides Neural networks Objective function Particle swarm optimization prediction interval (PI) Predictions Regularization Search algorithms Terrain factors Training Uncertainty Upper bounds |
title | Landslide Displacement Prediction With Uncertainty Based on Neural Networks With Random Hidden Weights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landslide%20Displacement%20Prediction%20With%20Uncertainty%20Based%20on%20Neural%20Networks%20With%20Random%20Hidden%20Weights&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Cheng%20Lian&rft.date=2016-12&rft.volume=27&rft.issue=12&rft.spage=2683&rft.epage=2695&rft.pages=2683-2695&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2015.2512283&rft_dat=%3Cproquest_RIE%3E1826644784%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1842213050&rft_id=info:pmid/26761907&rft_ieee_id=7377106&rfr_iscdi=true |