Choosing ℓ p norms in high-dimensional spaces based on hub analysis
The hubness phenomenon is a recently discovered aspect of the curse of dimensionality. Hub objects have a small distance to an exceptionally large number of data points while anti-hubs lie far from all other data points. A closely related problem is the concentration of distances in high-dimensional...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2015-12, Vol.169, p.281-287 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | |
container_start_page | 281 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 169 |
creator | Flexer, Arthur Schnitzer, Dominik |
description | The hubness phenomenon is a recently discovered aspect of the curse of dimensionality. Hub objects have a small distance to an exceptionally large number of data points while anti-hubs lie far from all other data points. A closely related problem is the concentration of distances in high-dimensional spaces. Previous work has already advocated the use of fractional ℓ
norms instead of the ubiquitous Euclidean norm to avoid the negative effects of distance concentration. However, which exact fractional norm to use is a largely unsolved problem. The contribution of this work is an empirical analysis of the relation of different ℓ
norms and hubness. We propose an unsupervised approach for choosing an ℓ
norm which minimizes hubs while simultaneously maximizing nearest neighbor classification. Our approach is evaluated on seven high-dimensional data sets and compared to three approaches that re-scale distances to avoid hubness. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826643816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826643816</sourcerecordid><originalsourceid>FETCH-LOGICAL-p561-842659b1a95df1c7feaad3c8791b6a994738d6f12fc251c621833a90d17cd44c3</originalsourceid><addsrcrecordid>eNo1j71OwzAURj2AaCm8AvLIEinXThx7RFX5kSqxdI9ubKcxSuyQS4buvAFvyJMQRJm-4Ts60rlg69yIMhMSxIpdE73lOVQgzBVbCaWKXApYs922S4lCPPLvzy8-8pimgXiIvAvHLnNh8JFCithzGtF64g2SdzwtwNxwXI4TBbphly325G_Pu2GHx91h-5ztX59etg_7bCwVZLoQqjQNoCldC7ZqPaKTVlcGGoXGFJXUTrUgWitKsEqAlhJN7qCyriis3LD7P-04pffZ00c9BLK-7zH6NFMN-jdMalALendG52bwrh6nMOB0qv_L5Q_3nlOB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826643816</pqid></control><display><type>article</type><title>Choosing ℓ p norms in high-dimensional spaces based on hub analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Flexer, Arthur ; Schnitzer, Dominik</creator><creatorcontrib>Flexer, Arthur ; Schnitzer, Dominik</creatorcontrib><description>The hubness phenomenon is a recently discovered aspect of the curse of dimensionality. Hub objects have a small distance to an exceptionally large number of data points while anti-hubs lie far from all other data points. A closely related problem is the concentration of distances in high-dimensional spaces. Previous work has already advocated the use of fractional ℓ
norms instead of the ubiquitous Euclidean norm to avoid the negative effects of distance concentration. However, which exact fractional norm to use is a largely unsolved problem. The contribution of this work is an empirical analysis of the relation of different ℓ
norms and hubness. We propose an unsupervised approach for choosing an ℓ
norm which minimizes hubs while simultaneously maximizing nearest neighbor classification. Our approach is evaluated on seven high-dimensional data sets and compared to three approaches that re-scale distances to avoid hubness.</description><identifier>ISSN: 0925-2312</identifier><identifier>PMID: 26640321</identifier><language>eng</language><publisher>Netherlands</publisher><ispartof>Neurocomputing (Amsterdam), 2015-12, Vol.169, p.281-287</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26640321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flexer, Arthur</creatorcontrib><creatorcontrib>Schnitzer, Dominik</creatorcontrib><title>Choosing ℓ p norms in high-dimensional spaces based on hub analysis</title><title>Neurocomputing (Amsterdam)</title><addtitle>Neurocomputing</addtitle><description>The hubness phenomenon is a recently discovered aspect of the curse of dimensionality. Hub objects have a small distance to an exceptionally large number of data points while anti-hubs lie far from all other data points. A closely related problem is the concentration of distances in high-dimensional spaces. Previous work has already advocated the use of fractional ℓ
norms instead of the ubiquitous Euclidean norm to avoid the negative effects of distance concentration. However, which exact fractional norm to use is a largely unsolved problem. The contribution of this work is an empirical analysis of the relation of different ℓ
norms and hubness. We propose an unsupervised approach for choosing an ℓ
norm which minimizes hubs while simultaneously maximizing nearest neighbor classification. Our approach is evaluated on seven high-dimensional data sets and compared to three approaches that re-scale distances to avoid hubness.</description><issn>0925-2312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1j71OwzAURj2AaCm8AvLIEinXThx7RFX5kSqxdI9ubKcxSuyQS4buvAFvyJMQRJm-4Ts60rlg69yIMhMSxIpdE73lOVQgzBVbCaWKXApYs922S4lCPPLvzy8-8pimgXiIvAvHLnNh8JFCithzGtF64g2SdzwtwNxwXI4TBbphly325G_Pu2GHx91h-5ztX59etg_7bCwVZLoQqjQNoCldC7ZqPaKTVlcGGoXGFJXUTrUgWitKsEqAlhJN7qCyriis3LD7P-04pffZ00c9BLK-7zH6NFMN-jdMalALendG52bwrh6nMOB0qv_L5Q_3nlOB</recordid><startdate>20151202</startdate><enddate>20151202</enddate><creator>Flexer, Arthur</creator><creator>Schnitzer, Dominik</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20151202</creationdate><title>Choosing ℓ p norms in high-dimensional spaces based on hub analysis</title><author>Flexer, Arthur ; Schnitzer, Dominik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p561-842659b1a95df1c7feaad3c8791b6a994738d6f12fc251c621833a90d17cd44c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flexer, Arthur</creatorcontrib><creatorcontrib>Schnitzer, Dominik</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flexer, Arthur</au><au>Schnitzer, Dominik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Choosing ℓ p norms in high-dimensional spaces based on hub analysis</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><addtitle>Neurocomputing</addtitle><date>2015-12-02</date><risdate>2015</risdate><volume>169</volume><spage>281</spage><epage>287</epage><pages>281-287</pages><issn>0925-2312</issn><abstract>The hubness phenomenon is a recently discovered aspect of the curse of dimensionality. Hub objects have a small distance to an exceptionally large number of data points while anti-hubs lie far from all other data points. A closely related problem is the concentration of distances in high-dimensional spaces. Previous work has already advocated the use of fractional ℓ
norms instead of the ubiquitous Euclidean norm to avoid the negative effects of distance concentration. However, which exact fractional norm to use is a largely unsolved problem. The contribution of this work is an empirical analysis of the relation of different ℓ
norms and hubness. We propose an unsupervised approach for choosing an ℓ
norm which minimizes hubs while simultaneously maximizing nearest neighbor classification. Our approach is evaluated on seven high-dimensional data sets and compared to three approaches that re-scale distances to avoid hubness.</abstract><cop>Netherlands</cop><pmid>26640321</pmid><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2015-12, Vol.169, p.281-287 |
issn | 0925-2312 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826643816 |
source | Elsevier ScienceDirect Journals |
title | Choosing ℓ p norms in high-dimensional spaces based on hub analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Choosing%20%E2%84%93%20p%20norms%20in%20high-dimensional%20spaces%20based%20on%20hub%20analysis&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Flexer,%20Arthur&rft.date=2015-12-02&rft.volume=169&rft.spage=281&rft.epage=287&rft.pages=281-287&rft.issn=0925-2312&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1826643816%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826643816&rft_id=info:pmid/26640321&rfr_iscdi=true |